如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。(I)求证:A1B∥平面AMC1;(II)求直线CC1与平面AMC1所成角的正弦值;(Ⅲ)试问:在棱A1B

题目简介

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。(I)求证:A1B∥平面AMC1;(II)求直线CC1与平面AMC1所成角的正弦值;(Ⅲ)试问:在棱A1B

题目详情

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
题型:解答题难度:偏易来源:不详

答案

(I)由线线平行证得线面平行 (II)(Ⅲ).在棱上存在棱的中点,使成角.

试题分析:(Ⅰ)连接,连接.在三角形中,
是三角形的中位线,
所以,
又因平面
所以∥平面
(Ⅱ)(法一)设直线与平面所成角为
点到平面的距离为,不妨设,则
因为,
所以.                
因为
所以,.
.

.     
(法二)如图以所在的直线为轴, 以所在的直线为轴, 以所在的直线为轴,以的长度为单位长度建立空间直角坐标系.

,,,,,.设直线与平面所成角为,平面的法向量为.则有,,
,得
设直线与平面所成角为
.               
(Ⅲ)假设直线上存在点,使成角为.
,则.
设其夹角为
所以,

(舍去),
.所以在棱上存在棱的中点,使成角.
点评:此题考查直线与平面平行的判断及直线与平面垂直的判断,第一问此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,难度比较大,计算要仔细.

更多内容推荐