(本题满分12分)如图,在中,,,、分别为、的中点,的延长线交于。现将沿折起,折成二面角,连接.(I)求证:平面平面;(II)当时,求二面角大小的余弦值.-高三数学

题目简介

(本题满分12分)如图,在中,,,、分别为、的中点,的延长线交于。现将沿折起,折成二面角,连接.(I)求证:平面平面;(II)当时,求二面角大小的余弦值.-高三数学

题目详情

(本题满分12分)

如图,在中,分别为的中点,的延长线交。现将沿折起,折成二面角,连接.
(I)求证:平面平面
(II)当时,求二面角大小的余弦值.
题型:解答题难度:偏易来源:不详

答案


证明:(I)在
又E是CD的中点,得AF⊥CD. …………..3分
折起后,AE⊥CD,EF⊥CD,又AE∩EF=E,AE面AED,EF平面AEF,
故CD⊥平面AEF,又CD平面CDB,故平面AEF⊥平面CBD.   …………5分
(II)过点A作AH⊥EF,垂足H落在FE的延长线上.
因为CD⊥平面AEF,所以CD⊥AH,所以AH⊥平面CBD.   …………6分
以E为原点,EF所在直线为x轴,ED所在直线为y轴,过E与AH平行的直线为z轴
建立如图空间直角坐标系.  …..……………………7分
由(I)可知∠AEF即为所求二面角的平面角,设为,并设AC= ,可得
    …………8分


 

  …………11分
故二面角A—CD—B大小的余弦值为…………12分

更多内容推荐