(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD,AB⊥AD,AD=2AB=2BC="2,"O为AD中点.

题目简介

(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD,AB⊥AD,AD=2AB=2BC="2,"O为AD中点.

题目详情

(本题12分)
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。
题型:解答题难度:偏易来源:不详

答案

(1)证明:,O为AD的中点,,……………2分

侧面PAD⊥底面ABCD侧面PAD底面ABCD=AD,PO面PAD
 PO⊥平面ABCD;      …………………………4分
(2)解:AB⊥AD,侧面PAD⊥底面ABCDAB⊥平面PAD
是直线PB与平面PAD所成的角,…………………………6分
中,AB=1,
即直线PB与平面PAD所成的角的正弦值为…………………………8分
(3)解:假设线段AD上存在点Q,使得三棱锥的体积为
 , 又………………10分
,,
线段AD上存在点Q,使得三棱锥的体积为…………12分

更多内容推荐