(本小题满分12分)如图:在正方体ABCD—A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点.(1)求证:面MNP∥面A1C1B;(2)求证:MO⊥面A1C1.-高三数学
第20题答案图(1)
题目简介
(本小题满分12分)如图:在正方体ABCD—A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点.(1)求证:面MNP∥面A1C1B;(2)求证:MO⊥面A1C1.-高三数学
题目详情
如图:在正方体ABCD—A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点.
(1) 求证:面MNP∥面A1C1B;(2) 求证:MO⊥面A1C1.
答案
又∵D1C∥A1B∴MN∥A1B.同理MP∥C1B.…………………………………………… 4分
而MN与MP相交,MN,MP
A1B
证明:(2) 法1,连结C1M和A1M,设正方体的边长为a,
∵正方体ABCD—A1B1C1D1,∴C1M=A1
又∵O为A1C1的中点,
∴A1C1⊥MO………………………………………………8分
连结BO和BM,在三角形BMO中,
第20题答案图(1)
即BO⊥MO.而A1C1,BO
…………………………………………………………12分
法2,连结AB1,B1D,B1D1,则O是B1D1的中点,
∵AD⊥面ABB1A1,A1B
又A1B⊥A1B,AD和AB1是面AB1D内两条相交直线,
∴A1B⊥面AB1D,…………………………………………8分
又B1D
又A1B和BC1是面A1BC1内两条相交直线,∴B1D⊥面A1BC1.………………………10分
∵OM是△D1B1D的中位线,∴OM∥B1D.∴OM⊥面A1BC1.…………………………12分