如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动-七

题目简介

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动-七

题目详情

如图,已知直线l1l2,直线l3和直线l1l2交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化. 若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?
题型:解答题难度:中档来源:同步题

答案

解:若P 点在C、D之间运动时,则有∠APB=∠PAC+∠PBD,
理由是:过点P 作PE ∥l1,则∠APE=∠PAC,
又因为l1∥l2,
所以PE ∥l2,
所以∠BPE =∠PBD,
所以∠APE+∠BPE =∠PAC+∠PBD ,
即∠APB=∠PAC+∠PBD,
若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:
(1 )如图1,有结论:∠APB =∠PBD -∠PAC,
理由是:过点P 作PE ∥l1,则∠APE=∠PAC,
又因为l1∥l2,
所以PE ∥l2,
所以∠BPE =∠PBD,
所以∠APB =∠BAE+∠APE,
即∠APB=∠PBD-∠PAC;
(2)如图2,有结论:∠APB =∠PAC -∠PBD,
理由是:过点P作PE∥l2,则∠BPE =∠PBD,
又因为l1∥l2,
所以PE∥l1,
所以∠APE =∠PAC,
所以∠APB=∠APE+∠BPE,
即∠APB=∠PAC+∠PBD。

更多内容推荐