优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在△ABC中,a,b,c是内角,A,B,C的对边,且tanB•cosC=2sinA-sinC.(I)求角B的大小;(Ⅱ)若AB•BC=-12,求b的最小值.-数学
在△ABC中,a,b,c是内角,A,B,C的对边,且tanB•cosC=2sinA-sinC.(I)求角B的大小;(Ⅱ)若AB•BC=-12,求b的最小值.-数学
题目简介
在△ABC中,a,b,c是内角,A,B,C的对边,且tanB•cosC=2sinA-sinC.(I)求角B的大小;(Ⅱ)若AB•BC=-12,求b的最小值.-数学
题目详情
在△ABC中,a,b,c是内角,A,B,C的对边,且tanB•cosC=2sinA-sinC.
(I)求角B的大小;
(Ⅱ)若
AB
•
BC
=-
1
2
,求b的最小值.
题型:解答题
难度:中档
来源:不详
答案
( I)原式可化为sinBcosC=2sinAcosB-sinCcosB…(1分)
∴sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,
∴sinA=2sinAcosB,
∵A∈(0,π),
∴sinA≠0,
∴cosB=
class="stub"1
2
…(5分)
∴B=
class="stub"π
3
…(6分)
∴
B=
class="stub"π
3
…(6分)
( II)
AB
•
BC
=accos(π-
class="stub"π
3
)=-
class="stub"1
2
ac=-
class="stub"1
2
,
∴ac=1…(8分)
由余弦定理,得b2=a2+c2-2accosB=a2+c2-ac≥2ac-ac=ac=1,
∴bc≥1.
即b的最小值是1(此时△ABC为边长是1的等边三角形)….(12分)
上一篇 :
在△ABC中,角A,B,C的对应边分别为
下一篇 :
函数f(x)=x2,-π<x≤0πsinx,0<x<π,则
搜索答案
更多内容推荐
已知tanα+cotα=52,α∈(π4,π2),求cos2α和sin(2α+π4)的值.-数学
已知锐角α、β、γ满足:cos2α+cos2β+cos2γ=1,则tanαtanβtanγ的最小值为______.-数学
已知函数f(x)=2-2cosx+2-2cos(2π3-x),x∈[0,2π],则当x=______时,函数f(x)有最大值,最大值为______.-数学
设函数f(x)=2sin2(π4+x)-acos2x-1(x∈R,a为常数),已知x=5π12时f(x)取到最大值2.(Ⅰ)求a的值;(Ⅱ)设y=g(x)与y=f(x)的图象关于直线x=π6对称,求满
在△ABC中,角A、B、C所对的边分别为a,b,c,若sin2B+C2+cos2A=14,且∠A为锐角.(Ⅰ)求∠A的度数;(Ⅱ)若a=3,b+c=3,求△ABC的面积.-数学
已知函数f(x)=32sin2x-cos2x-12,x∈R.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)设△ABC的三个内角A,B,C的对边分别为a,b,c,其中c=23,f(C)=0,若向量m=(si
在△ABC中,若tanAtanB=a2b2,则△ABC的形状是()A.直角三角形B.等腰或直角三角形C.不能确定D.等腰三角形-数学
已知△ABC满足AB2=AB•AC+BA•BC+CA•CB,则△ABC的形状是______.-数学
已知a=(cosθ,-sinθ),b=(cosθ,sinθ),θ∈(0,π2),且a•b=-12.(1)求θ的大小;(2)若sin(x+θ)=1010,x∈(π2,π),求cosx的值.-数学
已知向量a=(2cos2x,1),b=(1,3sin2x+m2),f(x)=a•b(1)求函数y=f(x)单调减区间;(2)当x∈[0,π2]时,2m2-2m>f(x)恒成立,求m取值范围.-数学
在△ABC,角A、B、C所对的边分别是a、b、c,且a2+b2=c2-ab(1)求角C的大小;(2)若cosA=33,求sinB的值.-数学
cos(-56π)的值是()A.32B.12C.-32D.-12-数学
已知函数f(x)=-1+23sinxcosx+2cos2x.(1)求f(x)的单调递减区间;(2)求f(x)图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f(α)=f(β),求ta
sin2θ+sinθ2cos2θ+2sin2θ+cosθ=()A.tanθB.tan2θC.cotθD.cot2θ-数学
已知0<ω<2,设f(x)=cos2ωx+3sinωxcosωx(1)若f(x)的周期为2π,求f(x)的单调递增区间;(2)若函数f(x)图象的一条对称轴为x=π6,求ω的值.-数学
已知函数f(x)=3sinxcosx-cos2x+12(I)求函数f(x)的对称中心和单调区间;(II)已知△ABC内角A、B、C的对边分别为a,b,3,且f(C)=1,若向量m=(1,sinA)与n
已知函数f(x)=2cosx•sin(x+π3)-3sin2x+sinx•cosx(I)求函数f(x)的单调递减区间;(II)将函数f(x)的图象向右平移m(m>0)个单位后得到g(x)的图象,求使函
已知m=(2cosx+23sinx,1),n=(cosx,-y),满足m•n=0.(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对
设f(x)=6cos2x-3sin2x.(Ⅰ)求f(x)的最大值及最小正周期;(Ⅱ)△ABC中锐角A满足f(A)=3-23,B=π12,角A、B、C的对边分别为a,b,c,求(ab+ba)-c2ab的
在△ABC中,(AB|AB|+AC|AC|)•BC=0,BA|BA|•BC|BC|=13,则△ABC的形状为()A.直角三角形B.等边三角形C.三边均不相等的三角形D.等腰非等边三角形-数学
三角方程2sinx+1=0的解集是______.-数学
在三角形ABC中,sinA•cosB=0,则三角形ABC是______(填三角形的形状)-数学
已知函数f(x)=cos2x+cos(2x-π3),给出下列结论:①f(x)是最小正周期为π的偶函数;②f(x)的图象关于x=π12对称;③f(x)的最大值为2;④将函数y=3sin2x的图象向左平移
在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=2,cosA=-24.(1)求sinC和b的值;(2)求cos(2A+π3)的值.-数学
已知函数f(x)=1-2sin2(x+π24)+2sin(x+π24)cos(x+π24).(I)求f(x)的最小正周期;(II)求函数f(x)的单调递增区间.-数学
已知函数f(x)=sin2x+3sinxcosx-12.(1)求f(-π12)的值;(2)若x∈[0,π2],求函数y=f(x)的最小值及取得最小值时的x值.-数学
在△ABC中,若AB•BC+AB2=0,则△ABC的形状是______.-数学
在△ABC中,角A,B,C所对的边分别为a,b,c,且.sinA2cosA2sinc2-sinB2cosB20-secB201.=2,(1)试判断△ABC的形状;(2)若△ABC的周长为16,求此三角
计算:sin65°+sin15°sin10°sin25°-cos15°cos80°.-数学
设向量a=(cosωx-sinωx,-1),b=(2sinωx,-1),其中ω>0,x∈R,已知函数f(x)=a•b的最小正周期为4π.(Ⅰ)求ω的值;(Ⅱ)若sinx0是关于t的方程2t2-t-1=
在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-35.(Ⅰ)求sinC的值;(Ⅱ)若a=5,求△ABC的面积.-数学
在△ABC中,边a、b、c所对角分别为A、B、C,且sinAa=cosBb=cosCc,则△ABC的形状为()A.等边三角形B.有一个角为30°的直角三角形C.等腰直角三角形D.有一个角为30°的等腰
设△ABC的内角A,B,C的对应边分别为a,b,c.已知角A是锐角且cos2B-cos2A=2sin(π3+B)sin(π3-B)(I)求角A的大小:(II)试确定满足条件a=22,b=3的△ABC的
已知函数f(x)=4cos4x-2cos2x-1sin(π4+x)sin(π4-x)(Ⅰ)求f(-11π12)的值;(Ⅱ)当x∈[0,π4)时,求g(x)=12f(x)+sin2x的最大值和最小值.-
已知m=(cosωx+sinωx,3cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0.设函数f(x)=m•n,且函数f(x)的周期为π.(I)求ω的值;(Ⅱ)在△ABC中,a,b
在△ABC中,角A、B、C的对应边分别为a、b、c,已知复数z1=3+2sinA•i,z2=sinA+(1+cosA)i(i是虚数单位),它们对应的向量依次为OZ1、OZ2,且满足OZ1∥OZ2,7(
θ∈[0,π],且.1cosθsinθ0cosθ-sinθ1sinθcosθ.=0,则θ=______.-数学
已知函数f(x)=-3sinx+3cosx,若x1•x2>0,且f(x)+f(x2)=0,则|x1+x2|的最小值为()A.π6B.π3C.π2D.2π3-数学
已知a,b,c分别为△ABC三个内角A、B、C所对的边长,且acosB-bcosA=35c.(1)求:tanAtanB的值;(2)若A=60°,c=5,求a、b.-数学
已知函数f(x)=3sin2x+sinxcosx-32(x∈R).(Ⅰ)求f(π4)的值;(Ⅱ)若x∈(0,π2),求f(x)的最大值.-数学
函数f(x)=.2cosxsinx-1.的值域是______.-数学
命题P:tan(A+B)=0,命题Q:tanA+tanB=0,则P是Q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件-数学
要得到一个奇函数,只需将函数f(x)=sinx-3cosx的图象()A.向右平移π6个单位B.向右平移π3个单位C.向左平移π6个单位D.向左平移π3个单位-数学
已知函数f(x)=2sinxcosx+23sin2x-3,(x∈R).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求f(x)的最大值,并指出取最大值时的x值.-数学
函数f(x)=2(cosx2)2+sinx的最小正周期是______.-数学
△ABC中,a2:b2=tanA:tanB,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形-数学
在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=π4,则cosA-cosC的值为()A.±2B.2C.42D.±42-数学
在△ABC中,角A、B、C所对的边分别为a、b、c,又cosA=45.(1)求cos2A2+cos2A+12的值.(2)若b=2,△ABC的面积S=3,求a的值.-数学
已知f(x)=a•b,其中向量a=(2cosx,-3sin2x),b=(cosx,1)(x∈R)(Ⅰ)求f(x)的周期和单调递减区间;(Ⅱ)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=
阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①sin(α-β)=sinαcosβ-cosαsinβ------②由①+②得sin(α+β)
返回顶部
题目简介
在△ABC中,a,b,c是内角,A,B,C的对边,且tanB•cosC=2sinA-sinC.(I)求角B的大小;(Ⅱ)若AB•BC=-12,求b的最小值.-数学
题目详情
(I)求角B的大小;
(Ⅱ)若
答案
∴sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,
∴sinA=2sinAcosB,
∵A∈(0,π),
∴sinA≠0,
∴cosB=
∴B=
∴B=
( II)
∴ac=1…(8分)
由余弦定理,得b2=a2+c2-2accosB=a2+c2-ac≥2ac-ac=ac=1,
∴bc≥1.
即b的最小值是1(此时△ABC为边长是1的等边三角形)….(12分)