已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值;(2)若f(x0)=1,且对任意的正整

题目简介

已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值;(2)若f(x0)=1,且对任意的正整

题目详情

已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对任意的正整数n.有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明.
题型:解答题难度:中档来源:广州三模

答案

(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0).①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0).②
由①②得   f(x0)=f(1).∴f(x)为单调函数,
∴x0=1.
(2)由(1)得f(x1+x2)=f(x1)+f(x2)+f(1)=f(x1)+f(x2)+1.
∵f(n+1)=f(n)+f(1)+1=f(n)+2,f(1)=1,∴f(n)=2n-1.(n∈Z*)
an=class="stub"1
2n-1

又∵f(1)=f(class="stub"1
2
+class="stub"1
2
)=f(class="stub"1
2
)+f(class="stub"1
2
)+f(1)

f(class="stub"1
2
)=0,b1=f(class="stub"1
2
)+1

f(class="stub"1
2n
)=f(class="stub"1
2n+1
+class="stub"1
2n+1
)=f(class="stub"1
2n+1
)+f(class="stub"1
2n+1
)+f(1)=2f(class="stub"1
2n+1
)+1

2bn+1=2f(class="stub"1
2n+1
)+2=f(class="stub"1
2n
)+1=bn

bn=(class="stub"1
2
)n-1

Sn=class="stub"1
1×3
+class="stub"1
3×5
+…+class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
1
-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
2n-1
-class="stub"1
2n+1
)

=class="stub"1
2
(1-class="stub"1
2n+1
)

Tn=(class="stub"1
2
)0(class="stub"1
2
)1+(class="stub"1
2
)1(class="stub"1
2
)2+…+(class="stub"1
2
)n-1(class="stub"1
2
)n=class="stub"1
2
+(class="stub"1
2
)3+…+(class="stub"1
2
)2n-1

=
class="stub"1
2
[1-(class="stub"1
4
)
n
]
1-class="stub"1
4
=class="stub"2
3
[1-(class="stub"1
4
)n]

class="stub"4
3
Sn-Tn=class="stub"2
3
(1-class="stub"1
2n+1
)-class="stub"2
3
[1-(class="stub"1
4
)n]=class="stub"2
3
[(class="stub"1
4
)n-class="stub"1
2n+1
]

∵4n=(3+1)n=Cnn3n+Cnn-13n-1+…+Cn13+Cn0≥3n+1>2n+1,
class="stub"4
3
Sn-Tn=class="stub"3
2
(class="stub"1
4n
-class="stub"1
2n+1
)<0

class="stub"4
3
SnTn

更多内容推荐