如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时-七年

题目简介

如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时-七年

题目详情

如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .

(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
题型:解答题难度:中档来源:不详

答案


(1)EN与MF相等 (或EN=MF),点F在直线NE上
(2)成立
(3)略

(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上,   3分
(说明:答对一个给2分)
(2)成立. 4分
证明:
法一:连结DE,DF.     5分
∵△ABC是等边三角形, ∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.     7分
在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE,
∴△DMF≌△DNE.    8分
∴MF=NE.         9分
法二:
延长EN,则EN过点F.      5分
∵△ABC是等边三角形, ∴AB=AC=BC.
又∵D,E,F是三边的中点, ∴EF=DF=BF.  
∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°,
∴∠BDM=∠FDN. 7分
又∵DM=DN, ∠ABM=∠DFN=60°,
∴△DBM≌△DFN.    8分
∴BM=FN.
∵BF=EF, ∴MF=EN.    9分
法三:
连结DF,NF.    5分
∵△ABC是等边三角形,
∴AC=BC=AC.
又∵D,E,F是三边的中点,
∴DF为三角形的中位线,∴DF=AC=AB=DB.
又∠BDM+∠MDF=60°, ∠NDF+∠MDF=60°,
∴∠BDM=∠FDN.    7分
在△DBM和△DFN中,DF=DB,
DM=DN, ∠BDM=∠NDF,∴△DBM≌△DFN.
∴∠B=∠DFN=60°.  8分
又∵△DEF是△ABC各边中点所构成的三角形,
∴∠DFE=60°.
∴可得点N在EF上,
∴MF=EN.          9分
(3)画出图形(连出线段NE),    11分

 

 
MF与EN相等的结论仍然成立(或MF=NE成立). 12分

更多内容推荐