如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA.PB.PC.PD.(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;(2)若cos

题目简介

如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA.PB.PC.PD.(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;(2)若cos

题目详情

如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结P
A.PB.PC.PD.

(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
(2)若cos∠PCB=,求PA的长.
题型:解答题难度:中档来源:不详

答案


(1)是,证明略。
(2)
解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点  ∴弧PB=弧PC
∴PB=PC
∵BD=AC=4   ∠PBD=∠PCA
∴△PBD≌△PCA
∴PA="PD " 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=AD=1
∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB=
∴PA=

更多内容推荐