给出四个命题①若cosα=cosβ,则α-β=2kπ,k∈Z.②函数y=2cos(2x+π3)的图象关于点(π12,0)对称.③函数y=sin|x|是周期函数.④函数y=cos(sinx)(x∈R)是

题目简介

给出四个命题①若cosα=cosβ,则α-β=2kπ,k∈Z.②函数y=2cos(2x+π3)的图象关于点(π12,0)对称.③函数y=sin|x|是周期函数.④函数y=cos(sinx)(x∈R)是

题目详情

给出四个命题
①若cosα=cosβ,则α-β=2kπ,k∈Z.
②函数y=2cos(2x+
π
3
)
的图象关于点(
π
12
,0)
对称.
③函数y=sin|x|是周期函数.
④函数y=cos(sinx)(x∈R)是偶函数.
其中正确的是______.
题型:填空题难度:中档来源:不详

答案

①若cosα=cosβ,则α=β+2kπ或者α=-β+2kπ,所以α-β=2kπ,k∈Z或α+β=2kπ,k∈Z,所以①错误.
②当x=class="stub"π
12
时,y=f(class="stub"π
12
)=2cos(2×class="stub"π
12
+class="stub"π
3
)=2cosclass="stub"π
2
=0
,所以函数y=2cos(2x+class="stub"π
3
)
的图象关于点(class="stub"π
12
,0)
对称.所以②正确.
③根据函数y=sin|x|的图象特征可得,函数y=sin|x|不是周期函数,故③不正确.
④因为f(-x)=cos(sin(-x))=cos(-sinx)=cos(sinx)=f(x),所以函数y=cos(sinx)(x∈R)是偶函数,所以④正确.
故答案为:②④.

更多内容推荐