已知a1+a+ab+b1+b+bc+c1+c+ca=1,求证:abc=1.-数学

题目简介

已知a1+a+ab+b1+b+bc+c1+c+ca=1,求证:abc=1.-数学

题目详情

已知
a
1+a+ab
+
b
1+b+bc
+
c
1+c+ca
=1
,求证:abc=1.
题型:解答题难度:中档来源:不详

答案

设abc=k,ab+a+1=u,bc+b+1=v,ac+c+1=w,
两边分别乘以c,a,b得:
abc+ca+c=cu,代入abc=k并根据ac+c+1=w得到:k-1+w=cu…(1)
abc+ab+a=av,代入abc=k并根据ab+a+1=u得到:k-1+u=av…(2)
abc+bc+b=bw,代入abc=k并根据bc+b+1=v得到:k-1+v=bw…(3)
已知:class="stub"a
u
+class="stub"b
v
+class="stub"c
w
=1,两边同乘以uvw得:avw+buw+cuv=uvw
(1)两边乘以v;(2)两边乘以w;(3)两边乘以u相加可得:
(k-1)(u+v+w)+uv+vw+uw=avw+buw+cuv=uvw…(4)
(1)×(2)×(3)三式得:(k-1+u)(k-1+v)(k-1+w)=abcuvw=kuvw,
∴(k-1)3+(u+v+w)(k-1)2+(uv+vw+uw)(k-1)-uvw(k-1)=0,
(k-1)[(k-1)2+(u+v+w)(k-1)+(uv+vw+uw)-uvw]=0,
与(4)比较可得:(k-1)3=0,
∴k=1,
即:abc=1.

更多内容推荐