(本题满分12分)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②

题目简介

(本题满分12分)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②

题目详情

(本题满分12分)

如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求二面角G-EF-D的大小;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明。
题型:解答题难度:偏易来源:不详

答案

45°,Q点为PB的中点
解:(1)∵EF∥CD∥AB,EG∥PB,根据面面平行的判定定理
∴平面EFG∥平面PAB,又PA面PAB,∴AP∥平面EFG ……………………4分
(2)∵平面PDC⊥平面ABCD,AD⊥DC
∴AD⊥平面PCD,而BC∥AD,∴BC⊥面EFD
过C作CR⊥EF交EF延长线于R点连GR,根据三垂线定理知
∠GRC即为二面角的平面角,∵GC=CR,∴∠GRC=45°,  …………………8分
故二面角G-EF-D的大小为45°。
(3)Q点为PB的中点,取PC中点M,则QM∥BC,∴QM⊥PC
在等腰Rt△PDC中,DM⊥PC,∴PC⊥面ADMQ         ……………………12分

更多内容推荐