探究性问题:11×2=11-12,12×3=12-13,13×4=13-14,则1n(n+1)=______.试用上面规律解决下面的问题:(1)计算1(x+1)(x+2)+1(x+2)(x+3)+1(

题目简介

探究性问题:11×2=11-12,12×3=12-13,13×4=13-14,则1n(n+1)=______.试用上面规律解决下面的问题:(1)计算1(x+1)(x+2)+1(x+2)(x+3)+1(

题目详情

探究性问题:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,则
1
n(n+1)
=______.
试用上面规律解决下面的问题:
(1)计算
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)

(2)已知
a-1
+(ab-2)2=0
,求
1
ab
+
1
(a+1)(b+1)
+…+
1
(a+2010)(b+2010)
的值.
题型:解答题难度:中档来源:不详

答案

根据已知的三个等式,总结规律得class="stub"1
n(n+1)
=class="stub"1
n
-class="stub"1
n+1

(1)原式=class="stub"1
(x+1)(x+2)
+class="stub"1
(x+2)(x+3)
+class="stub"1
(x+3)(x+4)

=class="stub"1
x+1
-class="stub"1
x+2
+class="stub"1
x+2
-class="stub"1
x+3
+class="stub"1
x+3
-class="stub"1
x+4
=class="stub"1
x+1
-class="stub"1
x+4
=class="stub"3
(x+1)(x+4)


(2)由
a-1
+(ab-2)2=0
得:a-1=0且ab-2=0,
解得a=1且ab=2,
所以b=2,
则原式=class="stub"1
ab
+class="stub"1
(a+1)(b+1)
+…+class="stub"1
(a+2010)(b+2010)

=class="stub"1
1×2
+class="stub"1
2×3
+…+class="stub"1
2011×2012

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
2010
-class="stub"1
2011
+class="stub"1
2011
-class="stub"1
2012
=1-class="stub"1
2012
=class="stub"2011
2012

故答案为:class="stub"1
n
-class="stub"1
n+1

更多内容推荐