如图,AB是圆O的直径,CA垂直圆O所在的平面,D是圆周上一点,已知AC=。AD=。(Ⅰ)求证:平面ADC⊥平面CDB;(Ⅱ)求平面CDB与ADB所成的二面角的正切值。-高二数学

题目简介

如图,AB是圆O的直径,CA垂直圆O所在的平面,D是圆周上一点,已知AC=。AD=。(Ⅰ)求证:平面ADC⊥平面CDB;(Ⅱ)求平面CDB与ADB所成的二面角的正切值。-高二数学

题目详情

如图,AB是圆O的直径,CA垂直圆O所在的平面,D是圆周上一点,已知AC=。AD=
(Ⅰ)求证:平面ADC⊥平面CDB;(Ⅱ)求平面CDB与ADB所成的二面角的正切值。
题型:解答题难度:偏易来源:不详

答案

(Ⅰ)∵CA⊥平面ADB   ∴CA⊥BD,又D是圆周上一点,故BD⊥AD∴BD⊥平面ACD ∵BD平面BCD   ∴平面CDB⊥平面CAD                                           
(Ⅱ)又(Ⅰ)知BD⊥平面ADC,    ∴BD⊥AD,BD⊥CD,故∠CDA就是二面角C—DB—A的平面角。又∴平面ADB与平面ADC所成二面角的平面角的正切值为

更多内容推荐