如图,梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.(1)求证:OE=OF,(2)求OEAD+OEBC的值;(3)求证:1AD+1BC=2EF.-数学

题目简介

如图,梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.(1)求证:OE=OF,(2)求OEAD+OEBC的值;(3)求证:1AD+1BC=2EF.-数学

题目详情

如图,梯形ABCD中,ADBC,EF经过梯形对角线的交点O,且EFAD.
(1)求证:OE=OF,
(2)求
OE
AD
+
OE
BC
的值;
(3)求证:
1
AD
+
1
BC
=
2
EF
360优课网
题型:解答题难度:中档来源:不详

答案

(1)∵EFAD,ADBC,
class="stub"OE
BC
=class="stub"AO
AC
=class="stub"OD
BD
=class="stub"OF
BC

故OE=OF;

(2)∵EFAD,ADBC,
class="stub"OE
AD
=class="stub"BE
AB
class="stub"OE
BC
=class="stub"AE
AB

class="stub"OE
AD
+class="stub"OE
BC
=class="stub"AE+BE
AB
=class="stub"AB
AB
=1;

(3)由(2)得:OE(class="stub"1
AD
+class="stub"1
BC
)=1,又OE=OF=class="stub"1
2
EF,
class="stub"2OE
EF
=1,
∴OE(class="stub"1
AD
+class="stub"1
BC
)=class="stub"2OE
EF

class="stub"1
AD
+class="stub"1
BC
=class="stub"2
EF

更多内容推荐