如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,EF=().-九年级

题目简介

如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,EF=().-九年级

题目详情

如图,直角梯形ABCD中,AD∥BC,∠A=90 °,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.
(1)证明:EF=CF;
(2)当tan∠ADE=时,EF=(     ).
题型:解答题难度:中档来源:专项题

答案

解:(1)过D作DG⊥BC于G,
由已知可得四边形ABGD为正方形,
∵DE⊥DC
∴∠ADE+∠EDG=90 °=∠GDC+∠EDG,
∴∠ADE=∠GDC,
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC,
在△EDF和△CDF中∠EDF=∠CDF,
DE=DC,DF为公共边,
∴△EDF≌△CDF,
∴EF=CF;
(2)5
 

更多内容推荐