已知,如图,∠1+∠2=180°,∠3=∠B,试证明∠AED=∠C,理由如下:∵∠1+∠2=180°(已知)又∠1+∠4=180°(_________)∴∠2=∠4(_________)∴EF∥AB(

题目简介

已知,如图,∠1+∠2=180°,∠3=∠B,试证明∠AED=∠C,理由如下:∵∠1+∠2=180°(已知)又∠1+∠4=180°(_________)∴∠2=∠4(_________)∴EF∥AB(

题目详情

已知,如图,∠1+∠2=180°,∠3=∠B,试证明∠AED=∠C,理由如下:
∵∠1+∠2=180° (已知)
又∠1+∠4=180°(_________
∴∠2=∠4(_________
∴EF∥AB(_________
∴∠3=∠ADE(_________
又∠3=∠B(已知)
∴∠ADE=∠B
∴DE∥BC(_________
∴∠AED=∠C(_________
题型:证明题难度:中档来源:河北省期中题

答案

证明:∵∠1+∠2=180° (已知),
又∠1+∠4=180°(补角的性质),
∴∠2=∠4(同角的补角相等),
∴EF∥AB(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
又∵∠3=∠B(已知),
∴∠ADE=∠B,
∴DE∥BC(同位角相等,两直线平行),
∴∠AED=∠C(两直线平行,同位角相等).

更多内容推荐