探索规律,由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+19=(2)请猜想1+3+5+

题目简介

探索规律,由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+19=(2)请猜想1+3+5+

题目详情

探索规律,由※组成的图案和算式,解答问题:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19=
(2)请猜想1+3+5+7+9+…+(2n﹣1)=
题型:解答题难度:中档来源:湖北省期中题

答案

解:由图案1,3,5,7,9是连续的几个奇数;
由算式:1+3=22,从1开始连续2项奇数和;
1+3+5=32,从1开始连续3项奇数和;
1+3+5+7=16=42,从1开始连续4项奇数和;
1+3+5+7+9=25=52,从1开始连续5项奇数和;
可以得出规律:从1开始连续n个奇数的和等于n2,
所以:(1)1+3+5+7+9+…+19=102,从1开始连续10个奇数相加;
(2)1+3+5+7+9+…+(2n﹣1)=n2,从1开始n个奇数相加.

更多内容推荐