优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知集合M={1,2,3,…,n}(n∈N*),若集合,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai+λ2aj(其中λ1,λ2∈{﹣1,0,1}),则称集合A为集合M的一个
已知集合M={1,2,3,…,n}(n∈N*),若集合,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai+λ2aj(其中λ1,λ2∈{﹣1,0,1}),则称集合A为集合M的一个
题目简介
已知集合M={1,2,3,…,n}(n∈N*),若集合,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai+λ2aj(其中λ1,λ2∈{﹣1,0,1}),则称集合A为集合M的一个
题目详情
已知集合M={1,2,3,…,n}(n∈N*),若集合
,且对任意的b∈M,存在a
i
,a
j
∈A(1≤i≤j≤m),使得b=λ
1
a
i
+λ
2
a
j
(其中λ
1
,λ
2
∈
{﹣1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(III)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.
题型:解答题
难度:中档
来源:期末题
答案
解:(Ⅰ)①A={1,5}不是M={1,2,3,4,5}的一个二元基底.
理由是3≠λ1×1+λ2×5;
②A={2,3}是M={1,2,3,4,5}的一个二元基底.
理由是 1=﹣1×2+1×3,2=1×2+0×3,3=0×2+1×3,
4=1×2+1×2,5=1×2+1×3,6=1×3+1×3.
(Ⅱ)不妨设a1<a2<a3<…<am,则形如1×ai+0×aj(1≤i≤j≤m)的正整数共有m个;
形如1×ai+1×ai(1≤i≤m)的正整数共有m个;
形如1×ai+1×aj(1≤i≤j≤m)的正整数至多有
个;
形如﹣1×ai+1×aj(1≤i≤j≤m)的正整数至多有
个.
又集合M={1,2,3,…,n}(n∈N*),
含n个不同的正整数,A为集合M的一个m元基底.
故m+m+
+
≥n,即m(m+1)≥n
(Ⅲ)由(Ⅱ)可知m(m+1)≥19,所以m≥4.
当m=4时,m(m+1)﹣19=1,
即用基底中元素表示出的数最多重复一个…*
假设A=a1,a2,a3,,a4为M={1,2,3,…,19}的一个4元基底,
不妨设a1<a2<a3<a4,则a4≥10.
当a4=10时,有a3=9,这时a2=8或7.
如果a2=8,则由1=10﹣9,1=9﹣8,18=9+9,18=10+8,这与结论*矛盾.
如果a2=7,则a1=6或5.
易知A={6,7,9,10}和A={5,7,9,10}都不是M={1,2,3,…,19}的4元基底,矛盾.当a4=11时,有a3=8,这时a2=7,a1=6,
易知A={6,7,8,11}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=12时,有a3=7,这时a2=6,a1=5,
易知A={5,6,7,12}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=13时,有a3=6,a2=5,a1=4,
易知A={4,5,6,13}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=14时,有a3=5,a2=4,a1=3,
易知A={3,4,5,14}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=15时,有a3=4,a2=3,a1=2,
易知A={2,3,4,15}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=16时,有a3=3,a2=2,a1=1,
易知A={1,2,3,16}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4≥17时,A均不可能是M的4元基底.
当m=5时,M的一个基底A={1,3,5,9,16}.
综上所述,m的最小可能值为5.
上一篇 :
一个同心圆形花坛分为两个部分
下一篇 :
(x﹣)4的展开式中的常数项为()(用数字
搜索答案
更多内容推荐
甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有______种.(用数字作答)-数学
用0、1、2、3、4、5共六个数字组成没有重复数字的6位数,其中0与1之间恰有两个数的六位数的个数是______.-数学
将1,2,3,4,5,6六个数按如图形式排列,其中a1=2,记第二行、第三行中的最大数分别为a、b,则满足b>a>a1的所有排法的总数是()A.36B.60C.72D.120-数学
在(1+x+x2)(1﹣x)10的展开式中,含x2项的系数是()(用具体数字作答).-高三数学
将4名实习老师分配到高一年级的3个班级实习,每班至少1名,则不同的分配方案有()A.36种B.24种C.12种D.6种-数学
某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课程表的不同排法种数为()A.600B.288C.480D.504-数学
已知(+)n的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中不含x的项.-高二数学
5名学生与两名教师站成一排照相,两名教师之间恰好有两名学生的不同站法有()种.A.120B.240C.480D.960-数学
二项式(1+sinx)n的展开式中,末尾两项的二项式系数之和为7,且二项式系数最大的一项的值为,则x在(0,2π)内的值为()-高三数学
在的二项式展开式中,常数项等于()。-高三数学
某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有______种.-数学
北京时间2011年3月11日13时46分,日本时间14时46分,日本发生里氏9.0级地震,震中位于宫城县以东太平洋海域,震源深度20公里,东京有强烈震感.在灾后第一时间,重庆红十字会-数学
某同学从6门选修课中选学2门,其中有2门课上课时间有冲突,则该同学可选学的方法总数有()A.14种B.13种C.10种D.8种-数学
设(1-x2)+(1-x2)2+...+(1-x2)9=a0+a1x+a2x2+a3x3+a4x4+...+a18x18,则a4=()-高三数学
某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示()种不同的结果.A.20B.40C-数学
若n=,则二项式展开式中的常数项为().(用数字作答)-高三数学
如图,在1×6的矩形长条格中,两格涂红色,两格涂黄色,两格涂蓝色,但要求至少有一种颜色涂在了相邻的两格,则不同的涂色方法共有______种-数学
从6个高度不同的同学中选取5个同学排成一排照相,要求偶数位置的同学高于相邻两个奇数位置的同学,则可产生的照片数是()A.60B.72C.84D.96-数学
某单位订阅了5份相同的学习材料发放给3个部门,每个部门至少发放1份材料,问不同的发放方法有()A.150种B.10种C.12种D.6种-数学
将编号为1、2、3、4的四个小球放入甲、乙、丙三只盒子内.(1)若三只盒子都不空,且3号球必须在乙盒内有多少种不同的放法;(2)若1号球不在甲盒内,2号球不在乙盒内,有多少种不-数学
设,则二项式的展开式中,x2项的系数为().-高三数学
若的展开式中第四项为常数项,则n=()-高三数学
若,则(a0+a2+a4)2﹣(a1+a3)2的值为().-高二数学
七张卡片上分别写有0、0、1、2、3、4、5,现从中取出三张后排成一排,组成一个三位数,则共能组成()个不同的三位数.A.100B.105C.145D.150-数学
设(x﹣1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=()-高三数学
设的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N=240,则展开式中x3的系数为[]A.﹣150B.150C.﹣500D.500-高三数学
学校组织5名同学甲、乙、丙、丁、戊去3个工厂A、B、C进行社会实践活动,每个同学只能去一个工厂.(1)问有多少种不同分配方案?(2)若每个工厂都有同学去,问有多少种不同分配方-数学
工作需要,现从4名女教师,5名男教师中选3名教师组成一个援川团队,要求男、女教师都有,则不同的组队方案种数为()A.140B.100C.80D.70-数学
8个人坐成一排,现要选出3人调换他们每一个人的位置,其余5个人的位置不变,则不同的调换方式有______种.-数学
如果的展开式的常数项等于1120,那么实数a的值为()-高三数学
的展开式中x2项的系数是()-高三数学
将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()A.30种B.90种C.180种D.270种-数学
对于,将n表示为,当时,当时为0或1,定义如下:在n的上述表示中,当,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0。(1)b2+b4+b6+b8=();(2)记cm为数列{bn}中第m
6个相同的小球放入标号为1、2、3的3个小盒中,要求每盒不空,共有放法种数为______.-数学
五名同学站成一排,甲不站在正中间,则不同的站法有______(用数字作答).-数学
的展开式中第4项的值是﹣40,则=()-高三数学
把3个相同的小球放入4个不同的盒子中,每个盒子最多放2个小球,则不同方法有()A.16B.24C.64D.81-数学
把语文、数学、英语、物理、化学这五门课程安排在一天的五节课里,如果数学必须比化学先上,则不同的排法有______种.-数学
甲、乙、丙、丁四人相互传球,第一次甲传给乙、丙、丁三人中任一人,第二次由拿球者再传给其他三人中任一人,这样共传了次,则第4次仍传回到甲的方法共有()A.21种B.24种C.27-数学
的展开式中的系数为()。-高三数学
设,则二项式的展开式中,x2项的系数为().-高三数学
的展开式中,x5的系数是[]A.-297B.-252C.297D.207-高二数学
在的二项展开式中各项系数之和为t,其二项式系数之和为h,若h+t=272,则其二项展开式中x2项的系数为()-高三数学
6个人站成一排,要求甲、乙不能站在两端的排法有多少种?-高二数学
从0、1、2、3、4、5、6中任取出两个奇数和两个偶数,可组成没有重复数字的四位数有()A.72个B.378个C.432个D.840个-数学
如图,某地有南北街道5条,东西街道7条.一邮递员从东北角的邮局A出发,送信到西南角的B地,且途经C地,要求所走路程最短,则共有______种不同的走法.(用数字作答)-数学
上海世博会期间,5名志愿者与2名国外友人排成一排拍照,2名国外友人相邻但不排在两端,则不同排法数种共有______种.-数学
已知关于x的二项式展开式的二项式系数之和为32,常数项为80,则a的值为[]A.1B.±1C.2D.±2-高三数学
设a=(sinx+cosx)dx,在展开式中,只有第六项的二项式系数最大,则展开式中的常数项是[]A.180B.90C.45D.360-高三数学
展开式中,常数项是()。-高三数学
返回顶部
题目简介
已知集合M={1,2,3,…,n}(n∈N*),若集合,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai+λ2aj(其中λ1,λ2∈{﹣1,0,1}),则称集合A为集合M的一个
题目详情
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(III)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.
答案
理由是3≠λ1×1+λ2×5;
②A={2,3}是M={1,2,3,4,5}的一个二元基底.
理由是 1=﹣1×2+1×3,2=1×2+0×3,3=0×2+1×3,
4=1×2+1×2,5=1×2+1×3,6=1×3+1×3.
(Ⅱ)不妨设a1<a2<a3<…<am,则形如1×ai+0×aj(1≤i≤j≤m)的正整数共有m个;
形如1×ai+1×ai(1≤i≤m)的正整数共有m个;
形如1×ai+1×aj(1≤i≤j≤m)的正整数至多有
形如﹣1×ai+1×aj(1≤i≤j≤m)的正整数至多有
又集合M={1,2,3,…,n}(n∈N*),
含n个不同的正整数,A为集合M的一个m元基底.
故m+m+
(Ⅲ)由(Ⅱ)可知m(m+1)≥19,所以m≥4.
当m=4时,m(m+1)﹣19=1,
即用基底中元素表示出的数最多重复一个…*
假设A=a1,a2,a3,,a4为M={1,2,3,…,19}的一个4元基底,
不妨设a1<a2<a3<a4,则a4≥10.
当a4=10时,有a3=9,这时a2=8或7.
如果a2=8,则由1=10﹣9,1=9﹣8,18=9+9,18=10+8,这与结论*矛盾.
如果a2=7,则a1=6或5.
易知A={6,7,9,10}和A={5,7,9,10}都不是M={1,2,3,…,19}的4元基底,矛盾.当a4=11时,有a3=8,这时a2=7,a1=6,
易知A={6,7,8,11}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=12时,有a3=7,这时a2=6,a1=5,
易知A={5,6,7,12}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=13时,有a3=6,a2=5,a1=4,
易知A={4,5,6,13}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=14时,有a3=5,a2=4,a1=3,
易知A={3,4,5,14}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=15时,有a3=4,a2=3,a1=2,
易知A={2,3,4,15}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4=16时,有a3=3,a2=2,a1=1,
易知A={1,2,3,16}不是M={1,2,3,…,19}的4元基底,矛盾.
当a4≥17时,A均不可能是M的4元基底.
当m=5时,M的一个基底A={1,3,5,9,16}.
综上所述,m的最小可能值为5.