如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3B.4:9C.2:5D.4:25-九年级数学

题目简介

如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3B.4:9C.2:5D.4:25-九年级数学

题目详情

如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=(  )
A.2:3B.4:9C.2:5D.4:25
题型:单选题难度:偏易来源:不详

答案

D.

试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
试题解析:∵四边形ABCD是平行四边形,
∴AB∥CD,BA=DC
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∴DE:AB=DE:DC=2:5,
∴S△DEF:S△ABF=4:25,

更多内容推荐