(本小题满分12分)已知数列的前项和.(1)求数列的通项公式;(2)证明:对任意,都有,使得成等比数列.-数学

题目简介

(本小题满分12分)已知数列的前项和.(1)求数列的通项公式;(2)证明:对任意,都有,使得成等比数列.-数学

题目详情

(本小题满分12分)
已知数列的前项和.
(1)求数列的通项公式;
(2)证明:对任意,都有,使得成等比数列.
题型:解答题难度:中档来源:不详

答案

(1)(2)详见解析.

试题分析:(1)由和项求通项,主要根据进行求解. 因为所以当时,所以(2)证明存在性问题,实质是确定要使得成等比数列,只需要,即.而此时,且所以对任意,都有,使得成等比数列.
试题解析:(1)因为所以当时,所以(2)要使得成等比数列,只需要,即.而此时,且所以对任意,都有,使得成等比数列.

更多内容推荐