(本小题满分12分)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)已知函数f(x)=2cos(2x-B),将f(x)的图象向左平移后

题目简介

(本小题满分12分)在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)已知函数f(x)=2cos(2x-B),将f(x)的图象向左平移后

题目详情

(本小题满分12分)
在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B的值;
(Ⅱ)已知函数f(x)=2cos(2x-B),将f(x)的图象向左平移后得到函数g(x)的图象,求g(x)的单调增区间.
题型:解答题难度:中档来源:不详

答案

解:(Ⅰ)由正弦定理得
 
                  ………3分
因为,所以,得,因为
所以,又为三角形的内角,所以              ………6分
(Ⅱ) 由题意得:
==                                ………9分
  得
的单调增区间为:.           ………12分

更多内容推荐