函数f(x)对一切实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,(1)求f(0)的值;(2)当f(x)+3<2x+a在(0,12)上恒成立时,求a的取值范围.-数学

题目简介

函数f(x)对一切实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,(1)求f(0)的值;(2)当f(x)+3<2x+a在(0,12)上恒成立时,求a的取值范围.-数学

题目详情

函数f(x)对一切实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,
(1)求f(0)的值;
(2)当f(x)+3<2x+a在(0,
1
2
)上恒成立时,求a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)令y=0,x=1代入已知式子f(x+y)-f(y)=(x+2y+1)x,
得f(1)-f(0)=2,
因f(1)=0所以f(0)=-2
(2)在f(x+y)-f(y)=(x+2y+1)x中令y=0得f(x)+2=(x+1)x
所以f(x)=x2+x-2,
由f(x)+3<2x+a得x2-x+1-a<0
因g(x)=x2-x+1-a在(0,class="stub"1
2
)上是减函数,
要x2-x+1-a<0恒成立,只需g(0)≤0即可,即1-a≤0,
∴a≥1.

更多内容推荐