(本小题满分12分)如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA="AB=BC"=2,AD=1.M是棱SB的中点.(Ⅰ)

题目简介

(本小题满分12分)如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA="AB=BC"=2,AD=1.M是棱SB的中点.(Ⅰ)

题目详情

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,
题型:解答题难度:偏易来源:不详

答案

(Ⅰ)见解析;(Ⅱ)平面SCD与平面SAB所成二面角的余弦值为.
(Ⅲ)时,.

试题分析:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,


.
.
设平面SCD的法向量是

,则,于是.
.
 AM∥平面SCD. …………………………(4分)
(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为
,即.
平面SCD与平面SAB所成二面角的余弦值为.………………………(8分)
(Ⅲ)设,则.
又,面SAB的法向量为
所以,.
.
,即时,.…………………………(12分)
点评:典型题,立体几何中平行、垂直关系的证明及角的计算问题是高考中的必考题,通过建立适当的坐标系,可使问题简化。

更多内容推荐