已知数列{an}的前n项和是Sn,且Sn+12an=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3(1-Sn+1),求适合方程1b1b2+1b2b3+…+1bnbn+1=2551的n的值.

题目简介

已知数列{an}的前n项和是Sn,且Sn+12an=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3(1-Sn+1),求适合方程1b1b2+1b2b3+…+1bnbn+1=2551的n的值.

题目详情

已知数列{an}的前n项和是Sn,且Sn+
1
2
an=1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3(1-Sn+1),求适合方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的n的值.
题型:解答题难度:中档来源:浙江模拟

答案

(Ⅰ)当n=1时,a1=S1,由S1+class="stub"1
2
a1=1
,得a1=class="stub"2
3

当n≥2时,
Sn=1-class="stub"1
2
an
Sn-1=1-class="stub"1
2
an-1

Sn-Sn-1=class="stub"1
2
(an-1-an)
,即an=class="stub"1
2
(an-1-an)

an=class="stub"1
3
an-1

∴{an}是以class="stub"2
3
为首项,class="stub"1
3
为公比的等比数列.
an=class="stub"2
3
•(class="stub"1
3
)n-1=2•(class="stub"1
3
)n
. (7分)

(Ⅱ)1-Sn=class="stub"1
2
an=(class="stub"1
3
)n

bn=log3(1-Sn+1)=log3(class="stub"1
3
)n+1=-n-1
,(9分)
class="stub"1
bnbn+1
=class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2
class="stub"1
b1b2
+class="stub"1
b2b3
++class="stub"1
bnbn+1
=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)++(class="stub"1
n+1
-class="stub"1
n+2
)=class="stub"1
2
-class="stub"1
n+2
(11分)
解方程class="stub"1
2
-class="stub"1
n+2
=class="stub"25
51
,得n=100(14分)

更多内容推荐