现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则1a1+1a2+1a3+…1a2012=()A.20122013B.40242013C.20112012D.4

题目简介

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则1a1+1a2+1a3+…1a2012=()A.20122013B.40242013C.20112012D.4

题目详情

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=(  )
A.
2012
2013
B.
4024
2013
C.
2011
2012
D.
4022
2012
题型:单选题难度:偏易来源:不详

答案

由a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,
令m=1可得:an+1=an+a1+n,∴an+1-an=1+n,
∴an=a1+(a2-a1)+…+(an-an-1)
=1+2+…+n=
n(n+1)
2

an=
n(n+1)
2

class="stub"1
an
=class="stub"2
n(n+1)
=2(class="stub"1
n
-class="stub"1
n+1
)

class="stub"1
a1
+class="stub"1
a2
+class="stub"1
a3
+…class="stub"1
a2012
=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
2012
-class="stub"1
2013
)]

=2(1-class="stub"1
2013
)
=class="stub"4024
2013

故选B.

更多内容推荐