如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.-数学

题目简介

如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.-数学

题目详情

如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交C
360优课网
F的延长线于D.
(1)求证:AE=CD;
(2)若AC=12cm,求BD的长.
题型:解答题难度:中档来源:呼和浩特

答案

(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,
360优课网

且BC=CA,
∴△DBC≌△ECA(AAS).
∴AE=CD.

(2)由(1)得AE=CD,AC=BC,
∴△CDB≌△AEC(HL),
∴BD=CE,
∵AE是BC边上的中线,
∴BD=EC=class="stub"1
2
BC=class="stub"1
2
AC,且AC=12cm.
∴BD=6cm.

更多内容推荐