如图,△ABD中,∠BAD=45°,AE⊥BD于E,DF⊥AB于F,交AE于G,BE=4,DE=3,则AG=______.-数学

题目简介

如图,△ABD中,∠BAD=45°,AE⊥BD于E,DF⊥AB于F,交AE于G,BE=4,DE=3,则AG=______.-数学

题目详情

如图,△ABD中,∠BAD=45°,AE⊥BD于E,DF⊥AB于F,交AE于G,BE=4,DE=3,则AG=______.360优课网
题型:填空题难度:中档来源:不详

答案

由∠BAD=45°,DF⊥AB于F则△ADF是等腰直角三角形,
所以AF=DF,
又∵∠AGF=∠DGE,AE⊥BD于E,
∴∠FAG=∠GDE,
利用等角(或同角)的余角相等可证得∠BAE=∠BDF,
又∵∠AFG=∠DFB=90°,
可证得△AGF≌△DBF(ASA),
所以AG=BD=BE+DE=7.

更多内容推荐