在数列{an}中,a1=2,an+1-2an=0(n∈N*),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=______.-数学

题目简介

在数列{an}中,a1=2,an+1-2an=0(n∈N*),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=______.-数学

题目详情

在数列{an}中,a1=2,an+1-2an=0(n∈N*),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=______.
题型:填空题难度:偏易来源:不详

答案

∵an+1-2an=0
an+1
an
=2
∴数列{an}是以a1=2为首项,公比为2的等比数列
∴an=2×2n-1=2n
∵bn是an和an+1的等差中项,
∴bn=
an+1+an
2
=
2n+1+2n
2
=3×2n-1
∴s6=b1+b2+…+b6=3(1+21+22+…+25)=3×
1×(1-26)
1-2
=189
答案为:189

更多内容推荐