如图,AB∥CD.(1)如果∠BAE=∠DCE=45°,求∠E的度数.请将下面解题过程补充完整.∵AB∥CD(已知),∴∠BAC+∠DCA=180°(_________),∴∠EAC+∠BAE+∠AC

题目简介

如图,AB∥CD.(1)如果∠BAE=∠DCE=45°,求∠E的度数.请将下面解题过程补充完整.∵AB∥CD(已知),∴∠BAC+∠DCA=180°(_________),∴∠EAC+∠BAE+∠AC

题目详情

如图,AB∥CD.
(1)如果∠BAE=∠DCE=45°,求∠E的度数.请将下面解题过程补充完整.
∵AB∥CD(已知),
∴∠BAC+∠DCA=180°( _________ ),
∴∠EAC+∠BAE+∠ACE+∠DCE=180°,
∵∠BAE=∠DCE=45°(已知),
∴∠EAC+ _________ +∠ACE+_________=180°(_________),
∴∠EAC+∠ACE=_________
∵∠EAC+∠ACE+∠E=180°( _________ ),
∴∠E=180°﹣( _________ )= _________
(2)如果AE、CE分别是∠BAC、∠DCA的平分线,(1)中的结论还成立吗?试说明理由.
(3)如果AE、CE分别是∠BAC、∠DCA内部的任意射线.求证:∠AEC=∠BAE+∠DCE.
题型:解答题难度:中档来源:广东省期中题

答案

解:(1)两直线平行,同旁内角互补;45°;45°;等量代换;90°;三角形的内角和等于180°;∠EAC+∠ACE;90°;
(2)∵AB∥CD(已知),
∴∠BAC+∠DCA=180°( 两直线平行,同旁内角互补),
∴AE、CE分别是∠BAC、∠DCA的平分线(已知),
∴∠EAC+∠ACE=∠BAC+∠DCA=90°(角平分线的性质),
∵∠EAC+∠ACE+∠E=180°( 三角形的内角和等于180°),
∴∠E=180°﹣(∠EAC+∠ACE)=90°;
(3)∵AB∥CD(已知),
∴∠BAE+∠DCE=180°﹣(∠EAC+∠AEC)( 两直线平行,同旁内角互补),
∵∠EAC+∠ACE+∠E=180°( 三角形的内角和等于180°),
∴∠E=180°﹣(∠EAC+∠ACE),
∴∠E=∠BAE+∠DCE(等量代换).

更多内容推荐