如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.(1)在图1中,∠AOC的度数为______;与线段BO相等的线段为______;(2)将图1中的△AOC绕点O顺时针旋转得

题目简介

如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.(1)在图1中,∠AOC的度数为______;与线段BO相等的线段为______;(2)将图1中的△AOC绕点O顺时针旋转得

题目详情

如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.
(1)在图1中,∠AOC的度数为______;与线段BO相等的线段为______;
(2)将图1中的△AOC绕点O顺时针旋转得到△A1OC1,如图2,连接AA1,BC1,试判断S△AOA1与S△BOC1的大小关系?并给出你的证明;
(3)将图1中的△ABO绕点B顺时针旋转得到△MBN,如图3,点P为MC的中点,连接PA、PN,求证:PA=PN.

360优课网
题型:解答题难度:中档来源:不详

答案

(1)∵AB=AC,AO是∠BAC的角平分线,
∴AO⊥BC,
∴∠AOC=90°,BO=OC,
∵∠BAC=90°,
∴BO=OA=OC;

(2)S△AOA1=S△BOC1
360优课网

证明:过点O作MN⊥BC1于M,交AA1于N,
∵OB=OC1,
∴BM=C1M,∠BOM=∠C1OM,
∵∠AOB=∠A1OC1=90°,
∴∠AON+∠BOM=∠A1ON+∠C1OM=90°,
∴∠AON=∠A1ON,
∵AO=A1O,
∴ON⊥AA1,
∴∠A1NO=90°=∠OMC1,
∵在△OMC1和△A1ON中
A1NO=∠C1MO
∠NA1O=∠C1OM
A1O=OC1

∴△A1ON≌△OC1M(AAS),
∴△A1ON和△OC1M的面积相等,
同理可证△AON和△OBM的面积相等,
∴S△AOA1=S△BOC1;

(3)证明:延长NP至E,使PE=NP,连接CE,AN,AE,
∵点P为MC的中点,
∴MP=CP,
∵在△PCE和△PMN中
CP=PM
∠EPC=∠MPN
PE=NP

∴△PCE≌△PMN(SAS),
∴CE=NM=BN,∠MNP=∠PEC,
∴CEMN,
设EC的延长线交BN的延长线于O,
∴∠BNM=∠BOC=90°,
又∵∠BAC=90°,
∴A、B、O、C四点共圆,
∴在四边形ABOC中,∠ACE=∠ABN,
∵在△ABN和△ACE中
AB=AC
∠ABN=∠ACE
BN=CE
                                          
∴△ABN≌△ACE(SAS),
∴AN=AE,∠ABN=∠EAC,
∵∠BAC=90°=∠BAN+∠NAC=∠EAC+∠NAC=∠EAN,
即∠EAN=90°,
∵点P为NE的中点,
∴PA=PN(直角三角形斜边上中线等于斜边的一半).

更多内容推荐