(1)由题意,根据梯形的面积公式,得 s=
(2)∵四边形PODB是平行四边形, ∴PB=OD=5, ∴PC=5, ∴t=5 (3)∵ODQP为菱形, ∴OD=OP=PQ=5, ∴在Rt△OPC中,由勾股定理得: PC=3 ∴t=3 (4)当P1O=OD=5时,由勾股定理可以求得P1C=3, P2O=P2D时,作P2E⊥OA, ∴OE=ED=2.5; 当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3, ∴P3C=2; 当P4D=OD=5时,作P4G⊥OA,由勾股定理,得 DG=3, ∴OG=8. ∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4) ![]() |
题目简介
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动.(1)求梯形ODPC的面积S与时间t的函数关系式.(2)t
题目详情
(1)求梯形ODPC的面积S与时间t的函数关系式.
(2)t为何值时,四边形PODB是平行四边形?
(3)在线段PB上是否存在一点Q,使得ODQP为菱形.若存在求t值,若不存在,说明理由.
(4)当△OPD为等腰三角形时,求点P的坐标.