优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(1)证明:AB=AC(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小-高二
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(1)证明:AB=AC(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小-高二
题目简介
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(1)证明:AB=AC(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小-高二
题目详情
如图,直三棱柱ABC-A
1
B
1
C
1
中,AB⊥AC,D、E分别为AA
1
、B
1
C的中点,DE⊥平面BCC
1
(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B
1
C与平面BCD所成的角的大小
题型:解答题
难度:中档
来源:不详
答案
(1)详见解析,(2)
试题分析:(1)证明AB=AC,往往转化为证明对应线段垂直,即证
边上中线垂直
.取BC中点F,连接EF,AF,易得ADEF为平行四边形,从而AF//DE. 又DE⊥平面
,可得AF⊥BC.(2)求直线与平面所成角的关键在于找面的垂线.而面的垂线,往往从面面垂直的性质定理中取到.观察图形可知,BC⊥平面DEF,从而平面BCD⊥平面DEF.过
作两平面的交线
的垂线就是平面BCD的垂线.因为本题三维垂直关系已知,所以也可利用空间向量进行求解.已知条件的二面角与所求线面角有一个相同的平面,这也简化了运算量.
试题解析:
解法一:(1)取BC中点F,连接EF,则EF
,从而EF
DA。
连接AF,则ADEF为平行四边形,从而AF//DE。又DE⊥平面
,故AF⊥平面
,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。 5分
(2)作AG⊥BD,垂足为G,连接CG。由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角。由题设知,∠AGC=600..
设AC=2,则AG=
。又AB=2,BC=
,故AF=
。
由
得2AD=
,解得AD=
。 9分
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为
与平面BCD所成的角。.
因ADEF为正方形,AD=
,故EH=1,又EC=
=2,
所以∠ECH=300,即
与平面BCD所成的角为300. 12分
解法二:
(1)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。
设B(1,0,0),C(0,b,0),D(0,0,c),则
(1,0,2c),E(
,
,c).
于是
=(
,
,0),
=(-1,b,0).由DE⊥平面
知DE⊥BC,
=0,求得b=1,所以 AB=AC。 5分
(2)设平面BCD的法向量
则
又
=(-1,1, 0),
=(-1,0,c),故
令x=1,则y=1,z=
,
=(1,1,
).
又平面
的法向量
=(0,1,0)
由二面角
为60°知,
=60°,
故
°,求得
9分
于是
,
,
°
所以
与平面
所成的角为30° 12分
上一篇 :
已知=(1,5,-2),=(3,1,z),若⊥,
下一篇 :
如图,三棱柱中,侧棱平面,为等腰直
搜索答案
更多内容推荐
如图,几何体中,为边长为的正方形,为直角梯形,,,,,.(1)求异面直线和所成角的大小;(2)求几何体的体积.-高三数学
在空间直角坐标系中,点与点的距离为.-高一数学
在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.-高二数学
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为()A.B.C.2D.-高三数学
如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.-高三数学
直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.-数学
在空间直角坐标系O-xyz中,平面OAB的法向量为=(2,–2,1),已知P(-1,3,2),则P到平面OAB的距离等于()A.4B.2C.3D.1-高二数学
已知非零向量a,b及平面α,若向量a是平面α的法向量,则a·b=0是向量b所在直线平行于平面α或在平面α内的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件-高三数学
已知四棱锥的底面是等腰梯形,且分别是的中点.(1)求证:;(2)求二面角的余弦值.-高二数学
如下图,在四棱柱中,底面和侧面都是矩形,是的中点,,.(1)求证:(2)求证:平面;(3)若平面与平面所成的锐二面角的大小为,求线段的长度.-高三数学
在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为()A.B.-C.D.--高三数学
若,,点在轴上,且,则点的坐标为.-高一数学
已知正四棱柱中,则与平面所成角的正弦值等于()A.B.C.D.-高二数学
在正方体中,点E为的中点,则平面与平面ABCD所成的锐二面角的余弦值为()A.B.C.D.-高三数学
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(
如图,四棱锥中,面,、分别为、的中点,,.(1)证明:∥面;(2)求面与面所成锐角的余弦值.-高三数学
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.(1)求证:AC⊥平面BDE;(2)求二面角F-BE-D的余弦值;(3)设点M
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明:B1C1⊥CE;(2)求二面角B1-CE-
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.-高三数
设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当∠APC为钝角时,λ的取值范围是________.-高三数学
如图,和所在平面互相垂直,且,,E、F分别为AC、DC的中点.(1)求证:;(2)求二面角的正弦值.-数学
如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,于,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.(1)求证:AE⊥平面BCD;(2)求二面角
如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面B
已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是()A.(,,-)B.(,-,)C.(-,,)D.(-,-,-)-高三数学
设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k的值为()A.3B.4C.5D.6-高三数学
三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.(1)求直线DB1与平面A1C1D所成角的正弦值;(2)求二面角B1-A1D-C1的正弦值.
如图,矩形所在的平面和平面互相垂直,等腰梯形中,∥,=2,,,,分别为,的中点,为底面的重心.(1)求证:∥平面;(2)求直线与平面所成角的正弦值.-高三数学
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。(1)求证:直线BD⊥平面OAC;(2)求直线MD与平面OAC所成角的大小;(3)求点A到平面
如图6,四棱柱的所有棱长都相等,,四边形和四边形为矩形.(1)证明:底面;(2)若,求二面角的余弦值.-数学
如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且.当时,证明:直线平面;是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明-数学
点关于坐标原点对称的点是()A.(-2,3,-1)B.(-2,-3,-1)C.(2,-3,-1)D.(-2,3,1)-高一数学
已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是________.-高三数学
(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,
直线l的方向向量为s=(-1,1,1),平面π的法向量为n=(2,x2+x,-x),若直线l∥平面π,则x的值为()A.-2B.-C.D.±-高三数学
若直线的方向向量为,平面的法向量为,则能使//的是()A.=,=B.=,=C.=,=D.=,=-高三数学
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.(1)求二面角D1-AE-C的大小;(2)求证:直线BF∥平面AD1E.-高三数学
向量=(2,4,x),=(2,y,2),若||=6,且⊥,则x+y的值为()A.-3B.1C.-3或1D.3或1-高二数学
如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为()A.是正三棱锥B.直线平面C.直线与所成的角是D.二面角为-高一数学
在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②-
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。-数学
已知三棱柱,平面,,,四边形为正方形,分别为中点.(1)求证:∥面;(2)求二面角——的余弦值.-高二数学
已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,则直线AE与平面ABC1D1所成角的正弦值为________.-高三数学
如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.-高三数学
在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;(2)求二面角S-BC-A的余弦值
若直线l⊥平面α,直线l的方向向量为s,平面α的法向量为n,则下列结论正确的是()A.s=(1,0,1),n=(1,0,-1)B.s=(1,1,1),n=(1,1,-2)C.s=(2,1,1),n=(
如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.-高三数学
如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.-高三数学
如图,四棱锥中,底面是直角梯形,平面,,,分别为,的中点,.(1)求证:;(2)求二面角的余弦值.-高三数学
如图,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC.(1)证明:平面ADB⊥平面BDC;(2)设E为BC的中点,求与夹角的余弦值.-数学
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.-高三数学
返回顶部
题目简介
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(1)证明:AB=AC(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小-高二
题目详情
(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
答案
试题分析:(1)证明AB=AC,往往转化为证明对应线段垂直,即证
试题解析:
解法一:(1)取BC中点F,连接EF,则EF
连接AF,则ADEF为平行四边形,从而AF//DE。又DE⊥平面
(2)作AG⊥BD,垂足为G,连接CG。由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角。由题设知,∠AGC=600..
设AC=2,则AG=
由
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为
因ADEF为正方形,AD=
所以∠ECH=300,即
解法二:
(1)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。
设B(1,0,0),C(0,b,0),D(0,0,c),则
于是
(2)设平面BCD的法向量
又
令x=1,则y=1,z=
又平面
由二面角
故
于是
所以