优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.-高三数学
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.-高三数学
题目简介
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.-高三数学
题目详情
如图,四棱锥
中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值.
题型:解答题
难度:中档
来源:不详
答案
(1)证明过程详见解析;(2)
.
试题分析:(1)可以遵循思路面面垂直
线面垂直
线线垂直,即证明面面垂直只需要证明其中一个面里面的一条直线垂直与另外一个面即可,即证明
面PDB,线面垂直只需要证明BC与面内相交的两条直线垂直即可,即
BD,
PD,前者可有三角形的勾股定理证得,后者由线面垂直得到
(2)求线面夹角可以利用三维空间直角坐标系,分别以DA,DB,PD三条两两垂直的直线建立坐标系,求面法向量与直线的夹角的余弦值的绝对值即为线面夹角的余弦值.
试题解析:
(1)∵
∴
又∵
⊥底面
∴
又∵
∴
平面
而
平面
∴平面
平面
5分
(1)由(1)所证,
平面
,所以∠
即为二面角P-BC-D的平面角,即∠
而
,所以
7分
分别以
、
、
为
轴、
轴、
轴建立空间直角坐标系.则
,
,
,
,所以,
,
,
,设平面
的法向量为
,则
,即
可解得
∴
与平面
所成角的正弦值为
12分
上一篇 :
如图,在△ABC中,∠ABC=,∠BAC,AD是
下一篇 :
如图,三棱柱中,点在平面ABC内的
搜索答案
更多内容推荐
如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B-AF-D的正弦值.-高三数学
如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()-高三数学
如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。-高三数学
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面.(1)求证:;(2)若二面角为,求的长.-高三数学
设是外接圆的圆心,,且,,,则.-高三数学
若平面α,β垂直,则下面可以是这两个平面的法向量的是()A.n1=(1,2,1),n2=(-3,1,1)B.n1=(1,1,2),n2=(-2,1,1)C.n1=(1,1,1),n2=(-1,2,1)
如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(1)求二面角的的余弦值;(2)求点到面的距离.-高三数学
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求二面角DA1CE的正弦值..-高三数学
如图,正方体的边长为2,,分别为,的中点,在五棱锥中,为棱的中点,平面与棱,分别交于,.(1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.-数学
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,,,.(1)求证:BC平面PBD:(2)求直线AP与平面PDB所成角的正弦值;(3)设E为侧棱PC上异于端
如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为()A.B.C.D.-高三数学
在空间直角坐标系中,设点是点关于坐标平面的对称点,则线段的长度等于.-高一数学
设分别是的斜边上的两个三等分点,已知,则.-高三数学
设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k等于()A.2B.-4C.4D.-2-高三数学
已知向量a=(2,-3,5)与向量b=(3,λ,)平行,则λ=()A.B.C.-D.--高三数学
如图,在四棱锥中,平面,底面是直角梯形,,∥,且,,为的中点.(1)设与平面所成的角为,二面角的大小为,求证:;(2)在线段上是否存在一点(与两点不重合),使得∥平面?若存在-高三数学
若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.-高三数学
在空间直角坐标系中,已知.若分别是三棱锥在坐标平面上的正投影图形的面积,则()A.B.且C.且D.且-数学
如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.(1)求证:∥平面;(2)求证:平面;(3)求二面角的余弦值.-高三数学
如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.(1)求证:平面;(2)求二面角的余弦值;(3)求点到平面的距离.-高三数学
已知向量a=(m,n),b=(p,q),定义a⊗b=mn-pq.给出下列四个结论:①a⊗a=0;②a⊗b=b⊗a;③(a+b)⊗a=a⊗a+b⊗a;④(a⊗b)2+(a·b)2=(m2+q2)·(n2
在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈,〉的值为()A.B.C.D.-高三数学
如图,在四棱锥中,平面,,且,点在上.(1)求证:;(2)若二面角的大小为,求与平面所成角的正弦值.-高三数学
已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.(1)求四棱锥的体积;(2)证明:;(3)求面所成锐二面角的余弦值.-高三数学
已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则||的值是______.-高三数学
已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ=.-高三数学
到的距离除以到的距离的值为的点的坐标满足()A.B.C.D.-高三数学
设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使++++=0成立的点M的个数为________.-高三数学
如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求-数学
如图,在三棱柱中,底面,,,分别是棱,的中点,为棱上的一点,且//平面.(1)求的值;(2)求证:;(3)求二面角的余弦值.-高三数学
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.(1)当a=2时,求证:AO⊥平面BCD.(2)当二面角A-BD-C的大小为
如图,已知平面四边形中,为的中点,,,且.将此平面四边形沿折成直二面角,连接,设中点为.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;-高三数学
平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)-高三
如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,(1)求证:A1、G、C三点共线;(2)求证:A1C⊥平面BC1D;(3)求点C到平面BC1D的距离.-高三数学
已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.-高三数学
如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是()A.平行B.相交C.异面垂直D.异面不垂直-高三数
如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,,是中点.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.-高三数学
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值
在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为.-高三数学
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.(1)求证:AC⊥DE;(2)求二
已知实数x,y,z满足,则的最小值是()A.B.3C.6D.9-高三数学
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的
如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为().A.B.C.D.-高三数学
如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD.(2)求二面角D-BA1-A的余弦值.(3)求点B1到平面A1B
如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.(1)求证:PO⊥平面ABCE;(
如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角ABDC为60°,如图(2).(1)求证:AE⊥平面BD
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.-高三数学
如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.(1)证明://平面;(2)证明:平-高
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.(1)求异面直线EF与BD所成角的余弦值;(2)求二面角OOFE的正弦值.-高三数学
正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为()A.aB.aC.aD.a-高三数学
返回顶部
题目简介
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.-高三数学
题目详情
(1)证明:平面
(2)若二面角
答案
试题分析:(1)可以遵循思路面面垂直
(2)求线面夹角可以利用三维空间直角坐标系,分别以DA,DB,PD三条两两垂直的直线建立坐标系,求面法向量与直线的夹角的余弦值的绝对值即为线面夹角的余弦值.
试题解析:
(1)∵
又∵
又∵
而
(1)由(1)所证,
而
分别以