优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.-高三数学
若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.-高三数学
题目简介
若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.-高三数学
题目详情
若平面α的一个法向量为
n
=(4,1,1),直线l的一个方向向量为
a
=(-2,-3,3),则l与
α
所成角的正弦值为________.
题型:填空题
难度:中档
来源:不详
答案
cos〈
n
,
a
〉=
=-
.
又l与
α
所成角记为θ,即sinθ=|cos〈
n
,
a
〉|=
.
上一篇 :
如图,在四棱锥中,平面,底面是直角
下一篇 :
在空间直角坐标系中,已知.若分
搜索答案
更多内容推荐
如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.(1)求证:∥平面;(2)求证:平面;(3)求二面角的余弦值.-高三数学
如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.(1)求证:平面;(2)求二面角的余弦值;(3)求点到平面的距离.-高三数学
已知向量a=(m,n),b=(p,q),定义a⊗b=mn-pq.给出下列四个结论:①a⊗a=0;②a⊗b=b⊗a;③(a+b)⊗a=a⊗a+b⊗a;④(a⊗b)2+(a·b)2=(m2+q2)·(n2
在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈,〉的值为()A.B.C.D.-高三数学
如图,在四棱锥中,平面,,且,点在上.(1)求证:;(2)若二面角的大小为,求与平面所成角的正弦值.-高三数学
已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.(1)求四棱锥的体积;(2)证明:;(3)求面所成锐二面角的余弦值.-高三数学
已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则||的值是______.-高三数学
已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ=.-高三数学
到的距离除以到的距离的值为的点的坐标满足()A.B.C.D.-高三数学
设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使++++=0成立的点M的个数为________.-高三数学
如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求-数学
如图,在三棱柱中,底面,,,分别是棱,的中点,为棱上的一点,且//平面.(1)求的值;(2)求证:;(3)求二面角的余弦值.-高三数学
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.(1)当a=2时,求证:AO⊥平面BCD.(2)当二面角A-BD-C的大小为
如图,已知平面四边形中,为的中点,,,且.将此平面四边形沿折成直二面角,连接,设中点为.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;-高三数学
平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)-高三
如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,(1)求证:A1、G、C三点共线;(2)求证:A1C⊥平面BC1D;(3)求点C到平面BC1D的距离.-高三数学
已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.-高三数学
如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是()A.平行B.相交C.异面垂直D.异面不垂直-高三数
如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,,是中点.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.-高三数学
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值
在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为.-高三数学
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.(1)求证:AC⊥DE;(2)求二
已知实数x,y,z满足,则的最小值是()A.B.3C.6D.9-高三数学
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的
如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为().A.B.C.D.-高三数学
如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD.(2)求二面角D-BA1-A的余弦值.(3)求点B1到平面A1B
如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.(1)求证:PO⊥平面ABCE;(
如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角ABDC为60°,如图(2).(1)求证:AE⊥平面BD
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.-高三数学
如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.(1)证明://平面;(2)证明:平-高
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.(1)求异面直线EF与BD所成角的余弦值;(2)求二面角OOFE的正弦值.-高三数学
正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为()A.aB.aC.aD.a-高三数学
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.(1)求点A1到平面的BDEF的距离;(2)求直线A1D与平面BDEF所成的角.-高二数学
如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.(1)证明:DM平面PBC;(2)求二面角A—DM—C的余弦值.-高三数学
A(5,-5,-6)、B(10,8,5)两点的距离等于.-高二数学
已知,,则下面说法中,正确的个数是()(1)线段AB的中点坐标为;(2)线段AB的长度为;(3)到A,B两点的距离相等的点的坐标满足.A.0个B.1个C.2个D.3个-高二数学
如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.(1)求此正四棱锥的体积.(2)求直线BM与侧面PAB所成角θ的正弦值.-高三数学
如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1BC1&sh
如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.(1)求异面直线
设是单位向量,且,则的值为.-高二数学
如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,(1)试证:A1、G、C三点共线;(2)试证:A1C⊥平面BC1D;-高三数学
如图,已知在四棱锥中,底面是矩形,平面,,,是的中点,是线段上的点.(1)当是的中点时,求证:平面;(2)要使二面角的大小为,试确定点的位置.-高二数学
内接于以O为圆心,1为半径的圆,且.(1)求数量积,,;(2)求的面积.-高三数学
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.(1)求证:CD⊥面ABB1A1;(2)在侧棱BB1上确定一点E,使得二面
设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为()A.(,,)B.(,,)C.(,,)D.(,,)-高三数学
直线l的方向向量为=(-1,1,1),平面π的法向量为=(2,x2+x,-x),若直线l∥平面π,则x的值为___________.-高二数学
如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.(1)求证:平面BED⊥平面SAB.(2)求直线SA与平面BED所成角的大小.-高三数学
正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角等于.-高三数学
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.(1)求证:平面平面EBD;(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD
如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.(1)求证:BE⊥平面DEFG;
返回顶部
题目简介
若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.-高三数学
题目详情
答案
又l与α所成角记为θ,即sinθ=|cos〈n,a〉|=