如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。-数学

题目简介

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。-数学

题目详情

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
题型:解答题难度:中档来源:不详

答案

(1)见解析   (2)
(1)因为, 由余弦定理得 
从而BD2+AD2= AB2,故BD AD;又PD 底面ABCD,可得BD PD
所以BD 平面PAD. 故 PABD
(2)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则

,,,

设平面PAB的法向量为n=(x,y,z),则,
 即
因此可取n=
设平面PBC的法向量为m,则
可取m=(0,-1,)        
故二面角A-PB-C的余弦值为 

更多内容推荐