在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;(2)如图,

题目简介

在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;(2)如图,

题目详情

在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).
(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;
(2)如图,⊙O1与正方形ABCO四边都相切,直线MQ切⊙O1于点P,分别交y轴、x轴、线段BC于点M、N、Q.求证:O1N平分∠MO1Q.

(3)若H(-4、4),T为CA延长线上一动点,过T、H、A三点作⊙O2,AS⊥AC交O2于F.当T运动时(不包括A点),AT-AS是否为定值?若是,求其值;若不是,说明理由.

题型:解答题难度:中档来源:不详

答案

(1)连接OG,
∵∠AOD=∠FOC=30°,由轴对称可得∠DOG=∠COG=30°,
又∴OC=4,
∵CG=OC•tan∠COG=4×
3
3
=class="stub"4
3
3
,(2分)
∴G(4,class="stub"4
3
3
);(3分)

(2)∵BQAM,
∴∠BQM+∠AMQ=180°,
根据切线长定理,∠O1QM+∠Q1MQ=180°×class="stub"1
2
=90°,
∴∠MO1Q=180°-90°=90°,(5分)
由切线长定理∠NO1Q=45°,
∴O1N平分∠MO1Q.(7分)

(3)AQ-AF的值是定值为4
2
,(8分)
在AT上取点V,使TV=AS,即AT-AS=AV,
∵AS⊥AC,
∴∠THS=∠TAS=90°,
∵H(-4、4),A(0、4),
∴AH⊥AO;
又∵∠OAC=45°,
∴∠TAH=45°,(9分)
∵∠THS=∠TAS=90°,
∴∠TSH=45°,
∴HT=HS;
又∠HTV=∠HAS,TV=AS,
∴△HTV≌△HSA,(11分)
∴△HAV为等腰直角三角形,
∴AT-AS=AV=
2
,AH=4
2
.(12分)

更多内容推荐