如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a,点E是PD的中点,(Ⅰ)证明PA⊥平面ABCD,PB∥平面EAC;(Ⅱ)求以AC为棱,EAC与DAC为面的二

题目简介

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a,点E是PD的中点,(Ⅰ)证明PA⊥平面ABCD,PB∥平面EAC;(Ⅱ)求以AC为棱,EAC与DAC为面的二

题目详情

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a,点E是PD的中点,
(Ⅰ)证明PA⊥平面ABCD,PB∥平面EAC;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的正切值。

题型:解答题难度:中档来源:湖南省高考真题

答案

(Ⅰ)证明:因为底面ABCD是菱形,∠ABC=60°,
所以AB=AD=AC=a,
在△PAB中,由PA2+AB2=2a2=PB2,知PA⊥AB,
同理,PA⊥AD,
所以PA⊥平面ABCD;
因为

所以共面,
又PB平面EAC,
所以PB∥平面EAC。

(Ⅱ)解:作EG∥PA交AD于G,
由PA⊥平面ABCD,知EG⊥平面ABCD,
作GH⊥AC于H,连结EH,
则EH⊥AC,∠EHG即为二面角θ的平面角,
又E是PD的中点,从而G是AD的中点,

所以

更多内容推荐