如图,在⊙O中,AB是弦,半径OC经过AB的中点M,(1)若OM=MC,求∠OCB的度数;(2)作∠BAD=2∠ABD,AD交BC的延长线于D,求证:AD是⊙O的切线.-数学

题目简介

如图,在⊙O中,AB是弦,半径OC经过AB的中点M,(1)若OM=MC,求∠OCB的度数;(2)作∠BAD=2∠ABD,AD交BC的延长线于D,求证:AD是⊙O的切线.-数学

题目详情

如图,在⊙O中,AB是弦,半径OC经过AB的中点M,
(1)若OM=MC,求∠OCB的度数;
(2)作∠BAD=2∠ABD,AD交BC的延长线于D,求证:AD是⊙O的切线.360优课网
题型:解答题难度:中档来源:集美区模拟

答案


360优课网
(1)∵M是AB的中点,
∴OC⊥AB,
∵OM=MC,
∴BC=OB,
∴OB=OC=BC,
∴△OBC是等边三角形,
∴∠OCB=60°;

(2)证明:连接OA,
∵∠AOC=2∠ABC,∠BAD=2∠ABD,
∴∠AOC=∠BAD,
∵∠AOC+∠OAB=90°,
∴∠OAD=∠AOB+∠BAD=∠OAB+∠AOC=90°,
即OA⊥AD,
∴AD是⊙O的切线.

更多内容推荐