已知O为坐标原点,向量OA=(sinα,1),OB=(cosα,0),OC=(-sinα,2),点P满足AB=BP.(Ⅰ)记函数f(α)=PB•CA,求函数f(α)的最小正周期;(Ⅱ)若O,P,C三点

题目简介

已知O为坐标原点,向量OA=(sinα,1),OB=(cosα,0),OC=(-sinα,2),点P满足AB=BP.(Ⅰ)记函数f(α)=PB•CA,求函数f(α)的最小正周期;(Ⅱ)若O,P,C三点

题目详情

已知O为坐标原点,向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)
,点P满足
AB
=
BP

(Ⅰ)记函数f(α)=
PB
CA
,求函数f(α)的最小正周期;
(Ⅱ)若O,P,C三点共线,求|
OA
+
OB
|
的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)

AB
=(cosα-sinα,-1)
CA
=(2sinα,-1)

OP
=(x,y)
,则
BP
=(x-cosα,y)

AB
=
BP
得,
x=2cosα-sinα
y=-1

OP
=(2cosα-sinα,-1)
,则
PB
=(sinα-cosα,1)

∴f(α)=(sinα-cosα,1)•(2sinα,-1)
=2sin2α-2sinαcosα-1
=-(sin2α+cos2α)
=-
2
sin(2α+class="stub"π
4
)

∴f(α)的最小正周期T=π.
(Ⅱ)由O,P,C三点共线可得:
OP
0C

则(-1)×(-sinα)=2×(2cosα-sinα),
解得tanα=class="stub"4
3

sin2α=class="stub"2sinαcosα
sin2α+cos2α
=class="stub"2tanα
1+tan2α
=class="stub"24
25

|
OA
+
OB
|=
(sinα+cosα)2+1

=
2+sin2α
=
74
5

更多内容推荐