优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 关于函数f(x)=2sin(3x-3π4),有下列命题:①其最小正周期为23π,②其图象由y=2sin3x向左平移34π个单位而得到,③在[π4,π]上为单调递增函数.则其中真命题为______.-数
关于函数f(x)=2sin(3x-3π4),有下列命题:①其最小正周期为23π,②其图象由y=2sin3x向左平移34π个单位而得到,③在[π4,π]上为单调递增函数.则其中真命题为______.-数
题目简介
关于函数f(x)=2sin(3x-3π4),有下列命题:①其最小正周期为23π,②其图象由y=2sin3x向左平移34π个单位而得到,③在[π4,π]上为单调递增函数.则其中真命题为______.-数
题目详情
关于函数f(x)=2sin(3x-
3π
4
),有下列命题:
①其最小正周期为
2
3
π
,②其图象由y=2sin3x向左平移
3
4
π
个单位而得到,③在[
π
4
,π
]上为单调递增函数.
则其中真命题为______.
题型:填空题
难度:中档
来源:不详
答案
对于①,根据函数y=Asin(ωx+φ)周期公式,可得f(x)=2sin(3x-
class="stub"3π
4
)的最小正周期为T=
class="stub"2π
3
,故①正确;
对于②,函数f(x)=2sin(3x-
class="stub"3π
4
)的图象是由y=2sin3x向右平移
class="stub"π
4
个单位或向左平移
class="stub"5π
12
单位而得到,故②不正确;
对于③,令-
class="stub"π
2
+2kπ≤3x-
class="stub"3π
4
≤
class="stub"π
2
+2kπ,得
class="stub"π
12
+
class="stub"2
3
kπ
≤x≤
class="stub"5π
12
+
class="stub"2
3
kπ
,(k∈Z)
得函数在[
class="stub"π
12
,
class="stub"5π
12
]和[
class="stub"3π
4
,
class="stub"13π
12
]上是增函数,而在区间[
class="stub"5π
12
,
class="stub"3π
4
]上是减函数,
由此可得函数在[
class="stub"π
4
,π
]上先增后减再增,故③不正确.
故答案为:①
上一篇 :
下列函数中,周期为π2的是()A.y=si
下一篇 :
如果tanα•cosα<0,那么角αk终
搜索答案
更多内容推荐
已知函数f(x)=23sinxcosx+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在[0,π2]上的单调递增区间;(2)若f(x0)=65,x0∈[π4,π2],求cos2x0的值
函数f(x)=cos2x5+sin2x5的图象中相邻的两条对称轴之间的距离是()A.5πB.2πC.52πD.25π-数学
已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是正周期为______的______函数.-数学
设函数f(x)=msinx+cosx的图象经过点(π2,1).(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期;(Ⅱ)若f(π12)=2sinA,其中A是面积为322的锐角△ABC的内角,且AB=2
某人沿一斜坡走了5米,升高了2.5米,则此斜坡的坡度为______.-数学
角α的终边在直线y=32x上,则cosa的值是()A.1313B.1312C.±31313D.±21313-数学
下列函数中,最小正周期是π且在区间(π2,π)上是增函数的是()A.y=sin2xB.y=sinxC.y=tanx2D.y=cos2x-数学
若sin2α<0,且tanα•cosα<0,则角α在()A.第一象限B.第二象限C.第三象限D.第四象限-数学
若2sinx=1+cosx,则tanx2的值等于()A.12B.12或不存在C.2D.2或12-数学
已知函数f(x)=2sin2(π4+x)-3cos2x,(1)写出函数f(x)的最小正周期;(2)求函数f(x)的单调递减区间;(3)若不等式|f(x)-m|<2在x∈[π4,π2]上恒成立,求实数m
设角α的终边过点P(-6a,-8a)(a≠0),则sinα-cosα的值是______.-数学
函数y=3sinx+4cosx+5的最小正周期是()A.π5B.π2C.πD.2π-数学
如图,已知A(3,4),点O为坐标原点,点B在第二象限,且|OB|=3,记∠AOx=θ.(1)求sin2θ.(2)若|AB|=7,求sin∠BOx的值.-数学
已知函数f(x)=sin2x+3sinxcosx+2cos2x,x∈R.(I)求函数f(x)的最小正周期和单调增区间;(II)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得
已知f(x)=23cos2x+sin2x(I)求f(x)的最小正周期.(II)当x∈[0,π2]时,求f(x)的最大值和最小值.-数学
若角α的始边在x轴的正半轴,顶点在坐标原点,角α终边与单位圆交点的横坐标为-12,则sinα=______.-数学
若sinθ•cosθ>0,且cosθ•tanθ<0,则角θ的终边落在第______象限.-数学
已知角α终边上一点P的坐标是(2sin2,-2cos2),则sinα=______.-数学
若α是第三象限角,且sin(α+β)cosβ-sinβcos(α+β)=-1213,则tanα2=______.-数学
已知角α的终边经过点p(-1,3),则sinα+cosα的值是()A.3+12B.3-12C.1-32D.-3+12-数学
若角α的终边过点(sin30°,-cos30°),则sinα等于()A.12B.-12C.-32D.-33-数学
设函数f(x)=2sin(π2x+π5).若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为______.-数学
已知函数f(x)=3sinωx+cosωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,(Ⅰ)求f(x)的解析式及和最小正周期;(Ⅱ)求f(x)对称轴方程和单调递增区间(Ⅲ)求
已知角α的终边过点P(3,-4),则sinα+cosα的值为()A.-15B.35C.-34D.-45-数学
已知sinθ=-35,(3π<θ<72π),则tanθ2=______.-数学
如果点P(tanθ,cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限-数学
若sinα=12,则下列角中符合条件的是α=()A.π6B.π4C.π3D.π2-数学
已知点P(1,2)在α终边上,则6sinα+8cosα3sinα-2cosα=______.-数学
已知cosθ>sinθ>tanθ,则θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角-数学
函数f(x)=|sin(12x+π3)|的最小正周期为()A.4πB.3πC.2πD.π-数学
已知角α的终边经过点P(sin3π4,cos3π4),且a≤α≤2π,则α的值为()A.π4B.3π4C.5π4D.7π4-数学
已知角α的终边经过点P(1,3).(1)求sinα+cosα的值;(2)写出角α的集合S.-数学
已知角α的终边经过点P(x,-6),且tanα=-35,则x的值为______.-数学
已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).(1)求函数f(x)的最小正周期;(2)若函数y=f(2x+π4)的图象关于直线x=π6对称,求φ的值.-数学
关于函数f(x)=4sin(2x+π3)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x-π6);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点(-π
关于函数f(x)=4sin(2x+π3),(x∈R)有下列命题:(1)y=f(x)是以2π为最小正周期的周期函数;(2)y=f(x)可改写为y=4cos(2x-π6);(3)y=f(x)的图象关于(-
函数y=1-sin2(x+π3)的最小正周期是______.-数学
已知角θ的终边过点(4,-3),则cosθ=()A.45B.-45C.35D.-35-数学
若点A(x,y)是600°角终边上异于原点的一点,则yx的值是()A.33B.-33C.3D.-3-数学
已知角θ的终边上一点P(-3,m),且sinθ=24m,求cosθ与tanθ的值.-数学
若sinαcosα<0,则角α的终边在()A.第二象限B.第四象限C.第二、四象限D.第三、四象限-数学
α是第二象限角,P(x,5)(x≠0)为其终边上一点,且cosα=24x,则sinα的值为()A.24B.64C.-104D.104-数学
y=sin2x+2sinxcosx的周期是______.-数学
若角600°的终边上有一点(-4,a),则a的值是()A.-43B.±43C.3D.43-数学
函数y=tan(2x-π3)的周期为______.-数学
在平面直角坐标系中,点P(tan2,cos1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限-数学
函数y=sin(π2-2x)+sin2x的最小正周期是______.-数学
函数f(x)=3cos(2x-π3)+1的最小正周期是()A.-3B.-3+1C.πD.2π-数学
对于函数f(x)=sinx,g(x)=cosx,h(x)=x+π3,有如下四个命题:①f(x)-g(x)的最大值为2;②f[h(x)]在区间[-π2,0]上是增函数;③g[f(x)]是最小正周期为2π
已知向量m=(cosx,-sinx),n=(cosx,sinx-23cosx),x∈R,设f(x)=m•n.(1)求函数f(x)的最小正周期.(2)若f(x)=2413,且x∈[π4,π2],求sin
返回顶部
题目简介
关于函数f(x)=2sin(3x-3π4),有下列命题:①其最小正周期为23π,②其图象由y=2sin3x向左平移34π个单位而得到,③在[π4,π]上为单调递增函数.则其中真命题为______.-数
题目详情
①其最小正周期为
则其中真命题为______.
答案
对于②,函数f(x)=2sin(3x-
对于③,令-
得函数在[
由此可得函数在[
故答案为:①