已知函数,为实数.(1)当时,判断函数的奇偶性,并说明理由;(2)当时,指出函数的单调区间(不要过程);(3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不-高一数学

题目简介

已知函数,为实数.(1)当时,判断函数的奇偶性,并说明理由;(2)当时,指出函数的单调区间(不要过程);(3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不-高一数学

题目详情

已知函数为实数.
(1)当时,判断函数的奇偶性,并说明理由;
(2)当时,指出函数的单调区间(不要过程);
(3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不存在,请说明理由
题型:解答题难度:中档来源:不详

答案

(1)


既不是奇函数,又不是偶函数.          ……………………………………4分
(2)(画图)时,,单调增区间为
时,
单调增区间为,单调减区间为………………………………8分
(3)     

由(2)知,上递增
必在区间上取最大值2        ……………………………………10分
,即时,
,成立              ……………………………………12分
,即时,
,则(舍)
综上,                         

更多内容推荐