如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足

题目简介

如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足

题目详情

如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.
 
(1)证明:A1O⊥平面ABC
(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.
题型:解答题难度:中档来源:不详

答案

(1)见解析(2)
(1)证明:∵AA1=A1CAC=2,且OAC中点,
A1OAC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABCACA1O⊂平面A1AC
A1O⊥平面ABC.
(2)∵VEBCC1=VABCA1B1C1=VA1-BCC1,∴BEBA1,即A1EA1B.
连接OB,在Rt△A1OB中,A1OOBA1OBO=1,故A1B=2,则A1E的长度为.

更多内容推荐