如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面.

题目简介

如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面.

题目详情

如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:
 
(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.
题型:解答题难度:中档来源:不详

答案

(1)见解析(2)见解析
(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理2知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.
(2)连结EF,A、B、C、D,∵E、F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.

更多内容推荐