已知函数f(x)=-x2+ax+b(a,b∈R)对任意实数x都有f(1+x)=f(1-x)成立,若当x∈[-1,1]时f(x)>0恒成立,则b的取值范围______.-数学

题目简介

已知函数f(x)=-x2+ax+b(a,b∈R)对任意实数x都有f(1+x)=f(1-x)成立,若当x∈[-1,1]时f(x)>0恒成立,则b的取值范围______.-数学

题目详情

已知函数f(x)=-x2+ax+b(a,b∈R)对任意实数x都有f(1+x)=f(1-x)成立,若当x∈[-1,1]时f(x)>0恒成立,则b的取值范围______.
题型:填空题难度:偏易来源:不详

答案

由题意,∵f(1+x)=f(1-x),
∴y=f(x)的图象关于直线x=1对称,
class="stub"a
2
=1
即a=2,
∵图象开口方向向下,
∴函数在[-1,1]上单调递增,
∴要使当x∈[-1,1]时f(x)>0恒成立,则有f(-1)>0,
∴b>3,
故答案为:b>3.

更多内容推荐