优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)联结,求异面直线与所成角的大小;(2)联结、,求三棱锥C1-BCA1的体积.-高三数学
已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)联结,求异面直线与所成角的大小;(2)联结、,求三棱锥C1-BCA1的体积.-高三数学
题目简介
已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)联结,求异面直线与所成角的大小;(2)联结、,求三棱锥C1-BCA1的体积.-高三数学
题目详情
已知三棱柱
的侧棱长和底面边长均为2,
在底面ABC内的射影O为底面△ABC的中心,如图所示:
(1)联结
,求异面直线
与
所成角的大小;
(2)联结
、
,求三棱锥C
1
-BCA
1
的体积.
题型:解答题
难度:中档
来源:不详
答案
(1)
;(2)
.
试题分析:(1)要求异面直线所成的角,必须按照定义作出这个角,即把异面直线平移为相交直线,求相交直线所夹的锐角或直角,当然我们一般是过异面直线中的某一条上一点作另一条直线的平行线,同时要借助已知图形中的平行关系寻找平行线,以方便解题.本题是三棱柱,显然有
∥
,因此只要在
中求
即可;(2)求三棱锥的体积,一般用公式
,即底面面积乘以高再除以3,但本题中由于三棱锥的高不容易找,而这个三棱锥在三棱柱中,因此我们可借助三棱柱来求棱锥的体积,利用棱锥体积的公式,可知这个三棱柱被分成三个体积相等的三棱锥
,
,
,因此我们只要求三棱柱的体积即可.
试题解析:(1) 联结
,并延长与
交于点
,则
是
边上的中线.
点
是正
的中心,且
平面
,
∴
且
.∴
.
∴
.
又
,
∴异面直线
与
所成的角为
.
∴
即四边形
为正方形.
∴异面直线
与
所成角的大小为
.
(2)∵三棱柱的所有棱长都为2,
∴可求算得
.
∴
,
.
∴
.
上一篇 :
如图,在几何体中,点在平面ABC内
下一篇 :
如图,在四棱锥中,四边形是菱形,,E
搜索答案
更多内容推荐
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:平面;(2)求证:平面平面;(3)求二面角的余弦值.-高三数学
如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成的角的余弦值(2)求二面角的余弦值(3)点到面的距离-高二数学
如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,,E为中点,(1)求证;CE∥平面,(2)求证:求二面角的大小.-高三数学
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;-高三数学
已知命题,为直线,为平面,若∥,,则∥;命题若,则,则下列命题为真命题的是()A.或B.或C.且D.且-高三数学
直线a、b为两异面直线,下列结论正确的是()A.过不在a、b上的任何一点,可作一个平面与a、b都平行B.过不在a、b上的任一点,可作一直线与a、b都相交C.过不在a、b上任一点,可作-数学
如图是表示一个正方体表面的一种平面展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有______对.-数学
ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如-数学
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN(Ⅰ)证明:MN//平面ABC;(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°-高二数学
在如图所示的几何体中,是边长为2的正三角形.若平面,平面平面,,且(1)求证://平面;(2)求证:平面平面.-高三数学
如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求棱锥E-D
已知正四棱柱的外接球直径为,底面边长,则侧棱与平面所成角的正切值为_________。-高三数学
对于不重合的直线和不重合的平面,下列命题错误的是()A.若,则B.若,则C.若,则D.若,则-高三数学
两条异面直线,指的是()A.在空间内不相交的两条直线B.分别位于两个不同平面内的两条直线C.某一平面内的一条直线和这个平面外的一条直线D.不在同一平面内的两条直线-数学
如图,在正方体ABCD-A1B1C1D1中,E,F,G分别为棱AA1,AB,CC1的中点,给出下列3对线段所在直线:①D1E与BG;②D1E与C1F;③A1C与C1F.其中,是异面直线的对数共有___
设是两条不同直线,是两个不同的平面,下列命题正确的是()A.且则B.且,则C.则D.则-高三数学
如图,边长为的等边三角形的中线与中位线交于点,已知(平面)是绕旋转过程中的一个图形,有下列命题:①平面平面;②//平面;③三棱锥的体积最大值为;④动点在平面上的射影在线段-高三数学
将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:①;②与异面直线、都垂直;③当二面角是直二面角时,=;④垂直于截面.其中正确的是(将正确-高二数学
如图,△是等边三角形,,,,,分别是,,的中点,将△沿折叠到的位置,使得.(1)求证:平面平面;(2)求证:平面.-高二数学
设是三条不同的直线,是三个不同的平面,则下列命题不正确的是()A.若∥,∥,则∥B.若∥,∥,则∥C.若∥,,则∥D.若∥,∥,则不一定平行于-高三数学
如图,在正四棱柱中,分别是的中点,是的中点,点在四边形上或其内部运动,且使,对于下列命题:①点可以与点重合;②点可以与点重合;③点可以在线段上;④点可以与点重合.其中正-高三数学
设是空间的不同直线或不同平面,下列条件中能保证“若,且,则”为真命题的是()A.为直线,为平面B.为平面C.为直线,z为平面D.为直线-高三数学
已知是两条不同的直线,是两个不同的平面,在下列条件中,能成为的充分条件的是()A.,与所成角相等B.在内的射影分别为,且C.,D.,-高三数学
如图,写出与长方体体对角线AC1异面的棱所在的直线.-数学
在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是()A.点的轨迹是一条线段B.与不可能平行C.与是异面直线D.-高三数学
在空间刻画两条异面直线的位置关系,需要用异面直线的______.-数学
直线在平面外是指A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点-高一数学
在棱长为的正方体中,错误的是()A.直线和直线所成角的大小为B.直线平面C.二面角的大小是D.直线到平面的距离为-高二数学
在三棱锥A-BCD中,且.给出下列命题:①分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面;②分别作△BAD和△CAD的边AD上的高,则这两条高相等;③且;④其中正确的命题有___-高三
已知、、是三条不同的直线,、、是三个不同的平面,给出以下命题:①若,则;②若,则;③若,,则;④若,,则.其中正确命题的序号是()A.②④B.②③C.③④D.①③-高三数学
下列命题中,真命题是()A.直线m、n都平行于平面,则m∥nB.设是真二面角,若直线,则C.设m、n是异面直线,若m∥平面,则n与相交D.若直线m、n在平面内的射影依次是一个点和一条直-高三数学
设是两条不同的直线,是两个不同的平面,则下列正确命题的序号是.①.若,,则;②.若,,则;③.若,,则;④.若,则.-高三数学
从正方体的棱和各个面上的对角线中选出k条,使得其中任意两条线段所在的直线都是异面直线,则k的最大值是______.-数学
在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有______.(填上所有正确答案的序号)-数学
如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.-数学
如图,在四棱锥中,底面是直角梯形,∥,,⊥平面SAD,点是的中点,且,.(1)求四棱锥的体积;(2)求证:∥平面;(3)求直线和平面所成的角的正弦值.-高三数学
已知直线、、不重合,平面、不重合,下列命题正确的是()A.若,,,则B.若,,则C.若,则D.若,则-高三数学
已知等腰直角三角形的斜边长为4cm,以斜边所在直线为旋转轴,两条直角边旋转一周得到的几何体的表面积为-高二数学
已知为空间四边形的边上的点,且,求证:.-高一数学
设、是不同的直线,、是不同的平面,则下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的个数是()A.0B.1C.2D.3-高三数学
A、B是直二面角的棱上的两点,分别在内作垂直于棱的线段AC,BD,已知AB=AC=BD=1,那么CD的长为()A.1B.2C.D.-高二数学
如图,在直四棱柱中,已知,.(Ⅰ)求证:;(Ⅱ)设是上一点,试确定的位置,使平面,并说明理由.-高三数学
如图,四棱柱中,平面.(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;①,②;③是平行四边形.(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角-高三数学
对于直线、和平面,若,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件-高三数学
关于异面直线的定义,下列说法中正确的是()A.平面内的一条直线和这平面外的一条直线B.分别在不同平面内的两条直线C.不在同一个平面内的两条直线D.不同在任何一个平面内的两条-高二数学
在棱长为1的正方体中,为的中点,点为侧面内一动点(含边界),若动点始终满足,则动点的轨迹的长度为__________-高一数学
如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;-高三数学
在空间中,若、表示不同的平面,、、表示不同直线,则以下命题中正确的有()①若∥,∥,∥,则∥②若⊥,⊥,⊥,则⊥③若⊥,⊥,∥,则∥④若∥,,,则∥A.①④B.②③C.②④D.②③④-高三数学
设是两条不同的直线,是两个不同的平面,有下列四个命题:①若;②若;③若;④若其中正确命题的序号是()A.①③B.①②C.③④D.②③-高三数学
返回顶部
题目简介
已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)联结,求异面直线与所成角的大小;(2)联结、,求三棱锥C1-BCA1的体积.-高三数学
题目详情
(1)联结
(2)联结
答案
试题分析:(1)要求异面直线所成的角,必须按照定义作出这个角,即把异面直线平移为相交直线,求相交直线所夹的锐角或直角,当然我们一般是过异面直线中的某一条上一点作另一条直线的平行线,同时要借助已知图形中的平行关系寻找平行线,以方便解题.本题是三棱柱,显然有
试题解析:(1) 联结
∴
∴
又
∴异面直线
∴
∴异面直线
(2)∵三棱柱的所有棱长都为2,
∴可求算得
∴
∴