(理)若sin(α-β)cosα-cos(α-β)sinα=223,β在第三象限,则tan(β+π4)=______.(文)已知α∈(π2,π),sinα=35,则tan(α+π4)=______.-

题目简介

(理)若sin(α-β)cosα-cos(α-β)sinα=223,β在第三象限,则tan(β+π4)=______.(文)已知α∈(π2,π),sinα=35,则tan(α+π4)=______.-

题目详情

(理)若sin(α-β)cosα-cos(α-β)sinα=
2
2
3
,β在第三象限,则tan(β+
π
4
)
=______.
(文)已知α∈(
π
2
,π),sinα=
3
5
,则tan(α+
π
4
)
=______.
题型:填空题难度:中档来源:不详

答案

(理)∵sin(α-β)cosα-cos(α-β)sinα=
2
2
3

∴sin[(α-β)-α]=
2
2
3
,即sinβ=-
2
2
3

又∵β在第三象限,∴cosβ=-
1-class="stub"8
9
=-class="stub"1
3
,则tanβ=2
2

tan(β+class="stub"π
4
)
=
tanβ+tanclass="stub"π
4
1-tanβ
=-
9+4
2
7


(文)∵α∈(class="stub"π
2
,π),sinα=class="stub"3
5

∴cosα=-
1-class="stub"9
25
=-class="stub"4
5
,则tanα=-class="stub"3
4

∴tan(α+class="stub"π
4
)
=
tanα+tanclass="stub"π
4
1-tanα
=class="stub"1
7

故答案为:-
9+4
2
7
class="stub"1
7

更多内容推荐