已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.(1)求证:BC⊥SA(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;(3)若二面角H—AB—C的平
题目简介
已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.(1)求证:BC⊥SA(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;(3)若二面角H—AB—C的平
题目详情
(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=
答案
试题分析:证明:(1)
OC=
点评:本题考查异面直线垂直的证明,考查三角形中心的证明,考查三棱锥体积的求法,解题时要认真审题,仔细解答,合理地化空间问题为平面问题.