如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.-九年级数学

题目简介

如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.-九年级数学

题目详情

如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.
题型:证明题难度:中档来源:广东省竞赛题

答案

证法(一):连接GF,
∵AD=AB,点G为AB边的中点,
∴AD=BG=AB.
∴AD=AG.
又∵∠BAC=90°,即AF⊥BD,
∴DF=FG.
∵EF为△ABC的中位线,
∴EF=AB,EF∥AB.
∴BG=EF,BG∥EF.
∴四边形BEFG为平行四边形.
∴GF=BE.
∴BE=DF.
证法(二):∵F,E是AC,BC的中点,
∴FE=AB(中位线定理);
∵AD=AB,
∴AD=FE,
∵点F是AC中点,
∴AF=FC,
又∠DAF=∠CFE=90°,
∴△DAF≌△FEC,
∴DF=EC,
∴DF=BE.

更多内容推荐