探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段-七年级数学

题目简介

探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段-七年级数学

题目详情

探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;当n=3时,钉子板上所连不同线段的长度值只有1,,2,,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)
(3)对n×n的钉子板,写出用n表示S的代数式
题型:解答题难度:偏难来源:期末题

答案

解:(1)4,2+3+4+5(或14);
(2)(i)n×n的钉子板比(n﹣1)×(n﹣1)的钉子板中不同长度的线段种数增加了n种;
(ii)分别用a,b表示n×n与(n﹣1)×(n﹣1)的钉子板中不同长度的线段种数,则a=b+n;
(3)S=2+3+4+…+n=×(n﹣1)=

更多内容推荐